Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nanoscale ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38919996

ABSTRACT

Gas sensors are essential for ensuring public safety and improving quality of life. Room-temperature gas sensors are notable for their potential economic benefits and low energy consumption, and their expected integration with wearable electronics, making them a focal point of contemporary research. Advances in nanomaterials and low-dimensional semiconductors have significantly contributed to the enhancement of room-temperature gas sensors. These advancements have focused on improving sensitivity, selectivity, and response/recovery times, with nanocomposites offering distinct advantages. The discussion here focuses on the use of semiconductor nanocomposites for gas sensing at room temperature, and provides a review of the latest synthesis techniques for these materials. This involves the precise adjustment of chemical compositions, microstructures, and morphologies. In addition, the design principles and potential functional mechanisms are examined. This is crucial for deepening the understanding and enhancing the operational capabilities of sensors. We also highlight the challenges faced in scaling up the production of nanocomposite materials. Looking ahead, semiconductor nanocomposites are expected to drive innovation in gas sensor technology due to their carefully crafted design and construction, paving the way for their extensive use in various sectors.

2.
Microsyst Nanoeng ; 10: 65, 2024.
Article in English | MEDLINE | ID: mdl-38784375

ABSTRACT

The development of artificial intelligence-enabled medical health care has created both opportunities and challenges for next-generation biosensor technology. Proteins are extensively used as biological macromolecular markers in disease diagnosis and the analysis of therapeutic effects. Electrochemical protein biosensors have achieved desirable specificity by using the specific antibody-antigen binding principle in immunology. However, the active centers of protein biomarkers are surrounded by a peptide matrix, which hinders charge transfer and results in insufficient sensor sensitivity. Therefore, electrode-modified materials and transducer devices have been designed to increase the sensitivity and improve the practical application prospects of electrochemical protein sensors. In this review, we summarize recent reports of electrochemical biosensors for protein biomarker detection. We highlight the latest research on electrochemical protein biosensors for the detection of cancer, viral infectious diseases, inflammation, and other diseases. The corresponding sensitive materials, transducer structures, and detection principles associated with such biosensors are also addressed generally. Finally, we present an outlook on the use of electrochemical protein biosensors for disease marker detection for the next few years.

3.
Lab Chip ; 24(7): 1875-1886, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38372578

ABSTRACT

Recently protein binders have emerged as a promising substitute for antibodies due to their high specificity and low cost. Herein, we demonstrate an electrochemical biosensor chip through the electronic labelling strategy using lead sulfide (PbS) colloidal quantum dots (CQDs) and the unnatural SARS-CoV-2 spike miniprotein receptor LCB. The unnatural receptor can be utilized as a molecular probe for the construction of CQD-based electrochemical biosensor chips, through which the specific binding of LCB and the spike protein is transduced to sensor electrical signals. The biosensor exhibits a good linear response in the concentration range of 10 pg mL-1 to 1 µg mL-1 (13.94 fM to 1.394 nM) with the limit of detection (LOD) being 3.31 pg mL-1 (4.607 fM for the three-electrode system) and 9.58 fg mL-1 (0.013 fM for the HEMT device). Due to the high sensitivity of the electrochemical biosensor, it was also used to study the binding kinetics between the unnatural receptor LCB and spike protein, which has achieved comparable results as those obtained with commercial equipment. To the best of our knowledge, this is the first example of using a computationally designed miniprotein receptor based on electrochemical methods, and it is the first kinetic assay performed with an electrochemical assay alone. The miniprotein receptor electrochemical biosensor based on QDs is desirable for fabricating high-throughput, large-area, wafer-scale biochips.


Subject(s)
Biosensing Techniques , Quantum Dots , Quantum Dots/chemistry , Spike Glycoprotein, Coronavirus , Electrochemical Techniques , Limit of Detection
4.
Adv Sci (Weinh) ; 10(26): e2302778, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37442769

ABSTRACT

Various catalysts are developed to improve the performance of metal oxide semiconductor gas sensors, but achieving high selectivity and response intensity in chemiresistive gas sensors (CGSs) remains a significant challenge. In this study, an in situ-annealing approach to synthesize Cu catalytic sites on ultrathin WO2.72 nanowires for detecting toluene at ultralow concentrations (Ra /Rg = 1.9 at 10 ppb) with high selectivity is developed. Experimental and molecular dynamic studies reveal that the Cu single atoms (SAs) act as active sites, promoting the oxidation of toluene and increasing the affinity of Cu single-atom catalysts (SACs)-containing sensing materials for toluene while weakening the association with carbon dioxide or water vapor. Density functional theory studies show that the selective binding of toluene to Cu SAs is due to the favorable binding sites provided by Cu SAs for toluene molecules over other gaseous species, which aids the adsorption of toluene on WO2.72 nanowires. This study demonstrates the successful atomic-level interface regulation engineering of WO2.72 nanowire-supported Cu SAs, providing a potential strategy for the development of highly active and durable CGSs.

5.
ACS Appl Mater Interfaces ; 15(12): 15707-15720, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36924356

ABSTRACT

The analysis of exhaled breath has opened up new exciting avenues in medical diagnostics, sleep monitoring, and drunk driving detection. Nevertheless, the detection accuracy is greatly affected due to high humidity in the exhaled breath. Here, we propose a regulation method to solve the problem of humidity adaptability in the ethanol-monitoring process by building a heterojunction and hollow-out nanostructure. Therefore, large specific surface area hollow-out Fe2O3-loaded NiO heterojunction nanorods assembled by porous ultrathin nanosheets were prepared by a well-tailored interface reaction. The excellent response (51.2 toward 10 ppm ethanol at 80% relative humidity) and selectivity to ethanol under high relative humidity with a lower operating temperature (150 °C) were obtained, and the detection limit was as low as 0.5 ppb with excellent long-term stability. The superior gas-sensing performance was attributed to the high surface activity of the heterojunction and hollow-out nanostructure. More importantly, GC-MS, diffuse reflectance Fourier transform infrared spectroscopy, and DFT were utilized to analyze the mechanisms of heterojunction sensitization, ethanol-sensing reaction, and high-humidity adaptability. Our integrated low-power MEMS Internet of Things (IoT) system based on Fe2O3@NiO successfully demonstrates the functional verification of ethanol detection in human exhalation, and the integrated voice alarm and IoT positioning functions are expected to solve the problem of real-time monitoring and rapid initial screening of drunk driving. Overall, this novel method plays a vital role in areas such as control of material morphology and composition, breath analysis, gas-sensing mechanism research, and artificial olfaction.


Subject(s)
Nanostructures , Nanotubes , Humans , Humidity , Exhalation , Ethanol/analysis , Nanostructures/chemistry
6.
Biosensors (Basel) ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36832021

ABSTRACT

Myeloperoxidase (MPO) has been demonstrated to be a biomarker of neutrophilic inflammation in various diseases. Rapid detection and quantitative analysis of MPO are of great significance for human health. Herein, an MPO protein flexible amperometric immunosensor based on a colloidal quantum dot (CQD)-modified electrode was demonstrated. The remarkable surface activity of CQDs allows them to bind directly and stably to the surface of proteins and to convert antigen-antibody specific binding reactions into significant currents. The flexible amperometric immunosensor provides quantitative analysis of MPO protein with an ultra-low limit of detection (LOD) (31.6 fg mL-1), as well as good reproducibility and stability. The detection method is expected to be applied in clinical examination, POCT (bedside test), community physical examination, home self-examination and other practical scenarios.


Subject(s)
Biosensing Techniques , Quantum Dots , Humans , Peroxidase , Biosensing Techniques/methods , Reproducibility of Results , Immunoassay/methods , Proteins , Limit of Detection , Biomarkers
7.
Nutr. hosp ; 39(4): 896-904, jul. - ago. 2022. graf
Article in English | IBECS | ID: ibc-212009

ABSTRACT

Background: exercise can increase the species and quantity of beneficial gut microbiota, enrich the diversity of microflora, and promote the development of symbiotic bacteria, especially in the stage of ontogeny. However, there is little evidence of the short-term voluntary exercise effect on the gut microbiota in developing mice. Material and method: therefore, we used short-term voluntary wheel running model to study the gut microbiota of developing mice (1 month old), and detected the fecal samples by 16S rRNA gene sequencing Results: the results showed that after 4 weeks of voluntary wheel running, the body weight of the running group was significantly lower than that of the control group. Conclusion: there was a significant separation between the running group and the control group in beta diversity measures. At the family level, the clostridiales flora of the running group was higher than that of the control group. Compared with the control group, the abundance of parabacteroides flora and anaerovorax flora increased significantly, and the abundance of anaerotruncus flora and odoribacter flora decreased significantly in the running group. These results showed that gut microbiota be affected after short-term voluntary wheel running in developing mice (AU)


Introducción: el ejercicio puede aumentar las especies y la cantidad de microbiota intestinal beneficiosa, enriquecer la diversidad de la microflora y promover el desarrollo de bacterias simbióticas, especialmente en la etapa de ontogenia. Sin embargo, hay poca evidencia del efecto del ejercicio voluntario a corto plazo sobre la microbiota intestinal en ratones en desarrollo. Material y método: por lo tanto, utilizamos un modelo de carrera de ruedas voluntario a corto plazo para estudiar la microbiota intestinal de ratones en desarrollo (1 mes de edad) y detectamos las muestras fecales mediante la secuenciación del gen 16S rRNA. Resultados: los resultados mostraron que después de 4 semanas de carrera voluntaria con ruedas, el peso corporal del grupo de carrera fue significativamente más bajo que el del grupo de control. Conclusión: hubo una diferencia significativa entre el grupo de corredores y el grupo de control en las medidas de diversidad beta. A nivel familiar, la flora de clostridiales del grupo de corredores fue mayor que la del grupo de control. En comparación con el grupo de control, la abundancia de flora parabacteroides y flora anaerovorax aumentó significativamente, y la abundancia de flora anaerotruncus y flora odoribacter disminuyó significativamente en el grupo de carrera. Estos resultados mostraron que la microbiota intestinal se ve afectada después de la carrera voluntaria a corto plazo en ratones en desarrollo (AU)


Subject(s)
Animals , Male , Mice , Gastrointestinal Microbiome , Physical Conditioning, Animal , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Motor Activity
8.
Biosens Bioelectron ; 202: 113974, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35032920

ABSTRACT

Rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody can provide immunological evidence in addition to nucleic acid test for the early diagnosis and on-site screening of coronavirus disease 2019 (COVID-19). All-solid-state biosensor capable of rapid, quantitative SARS-CoV-2 antibody testing is still lacking. Herein, we propose an electronic labelling strategy of protein molecules and demonstrate SARS-CoV-2 protein biosensor employing colloidal quantum dots (CQDs)-modified electrode. The feature current peak corresponding to the specific binding reaction of SARS-CoV-2 antigen and antibody proteins was observed for the first time. The unique charging and discharging effect depending on the alternating voltage applied was ascribed to the quantum confinement, Coulomb blockade and quantum tunneling effects of quantum dots. CQDs-modified electrode could recognize the specific binding reaction between antigen and antibody and then transduce it into significant electrical current. In the case of serum specimens from COVID-19 patient samples, the all-solid-state protein biosensor provides quantitative analysis of SARS-CoV-2 antibody with correlation coefficient of 93.8% compared to enzyme-linked immunosorbent assay (ELISA) results. It discriminates patient and normal samples with accuracy of about 90%. The results could be read within 1 min by handheld testing system prototype. The sensitive and specific protein biosensor combines the advantages of rapidity, accuracy, and convenience, facilitating the implement of low-cost, high-throughput immunological diagnostic technique for clinical lab, point-of-care testing (POCT) as well as home-use test.


Subject(s)
Biosensing Techniques , COVID-19 , Quantum Dots , Biosensing Techniques/methods , Electrodes , Humans , SARS-CoV-2 , Sensitivity and Specificity
9.
ACS Appl Mater Interfaces ; 13(21): 25111-25120, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34003629

ABSTRACT

Porous hollow microsphere (PHM) materials represent ideal building blocks for realizing diverse functional applications such as catalysis, energy storage, drug delivery, and chemical sensing. This has stimulated intense efforts to construct metal oxide PHMs for achieving highly sensitive and low-power-consumption semiconductor gas sensors. Conventional methods for constructing PHMs rely on delicate reprogramming of templates and may suffer from the structural collapse issue during the removal of templates. Here, we propose a template-free method for the construction of tin oxide (SnO2) PHMs via the competition between the solvent evaporation rate and the phase separation dynamics of colloidal SnO2 quantum wires. The SnO2 PHMs (typically 3 ± 0.5 µm diameter and approximately 200 nm shell thickness) exhibit desirable structural stability with desirable processing compatibility with various substrates. This enables the realization of NO2 gas sensors having a superior response and recovery process at room temperature. The superior NO2-sensing characteristic is attributed to the effective gas adsorption competition on solid surfaces benefiting from efficient diffusion channels, enhancing the interaction of metal oxide solids with gas molecules in terms of the receptor function, transducer function, and utility factor. In addition, the one-step deposition of SnO2 PHMs directly onto device substrates simplifies the fabrication conditions for semiconductor gas sensors. The desirable structural stability of PHMs combined with the functional diversity of metal oxides may open new opportunities for the design of functional materials and devices.

10.
Nanomicro Lett ; 12(1): 59, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-34138314

ABSTRACT

The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network. While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost, their application is limited by their high operating temperature. Two-dimensional (2D) layered materials, typically molybdenum disulfide (MoS2) nanosheets, are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility. This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots (QDs). The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules. The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature, and the limit of NO2 detection was estimated to be 94 ppb. The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance, offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.

11.
ACS Appl Mater Interfaces ; 11(28): 25322-25329, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31268653

ABSTRACT

Pure and 3-12 at. % Pr-doped In2O3 macroporous spheres were fabricated by ultrasonic spray pyrolysis and their acetone-sensing characteristics under dry and humid conditions were investigated to design humidity-independent gas sensors. The 12 at. % Pr-doped In2O3 sensor exhibited approximately the same acetone responses and sensor resistances at 450 °C regardless of the humidity variation, whereas the pure In2O3 exhibited significant deterioration in gas-sensing characteristics upon the change in the atmosphere, from dry to humid (relative humidity: 80%). Moreover, the 12 at. % Pr-doped In2O3 sensor exhibited a high response to acetone with negligible cross responses to interfering gases (NH3, CO, benzene, toluene, NO2, and H2) under the highly humid atmosphere. The mechanism for the humidity-immune gas-sensing characteristics was investigated by X-ray photoelectron and diffuse reflectance infrared Fourier transform spectroscopies together with the phenomenological gas-sensing results and discussed in relation with Pr3+/Pr4+ redox pairs, regenerative oxygen adsorption, and scavenging of hydroxyl groups.

12.
ACS Appl Mater Interfaces ; 11(5): 5240-5246, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30633490

ABSTRACT

Three PbTiO3 nanostructures were synthesized using a one-step hydrothermal reaction with different TiO2 powders as Ti sources, and their gas-sensing properties were investigated. The sensor comprising PbTiO3 nanoplates (NPs) exhibited a high response (resistance ratio = 80.4) to 5 ppm ethanol at 300 °C and could detect trace concentrations of ethanol down to 100 ppb. Moreover, the sensor showed high ethanol selectivity and nearly the same sensing characteristics despite the wide range of humidity variation from 20 to 80% RH. The mechanism for humidity-independent gas sensing was elucidated using diffuse reflectance infrared Fourier transform spectra. PbTiO3 NPs are new and promising sensing materials that can be used for detecting ethanol in a highly sensitive and selective manner with negligible interference from ambient humidity.

13.
Article in English | WPRIM (Western Pacific) | ID: wpr-761815

ABSTRACT

Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer's disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. β-Amyloid (Aβ) and ibotenic acid (IBO)-induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed Aβ + IBO-induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in Aβ + IBO-induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against Aβ + IBO-induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A₁ receptor-specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the Aβ + IBO-induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of A₁R is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.


Subject(s)
Action Potentials , Adenosine , Alzheimer Disease , Fires , Ibotenic Acid , Membranes , Neurons , Neuroprotection , Neuroprotective Agents , Patch-Clamp Techniques , Pyramidal Cells
14.
ACS Appl Mater Interfaces ; 10(33): 27858-27867, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30051712

ABSTRACT

Ammonia (NH3) is an irritant gas with a unique pungent odor; sub-parts per million-level breath ammonia is a medical biomarker for kidney disorders and Helicobacter pylori bacteria-induced stomach infections. The humidity varies in both ambient environment and exhaled breath, and thus humidity dependence of gas-sensing characteristics is a great obstacle for real-time applications. Herein, flexible, humidity-independent, and room-temperature ammonia sensors are fabricated by the thermal evaporation of CuBr on a polyimide substrate and subsequent coating of a nanoscale moisture-blocking CeO2 overlayer by electron-beam evaporation. CuBr sensors coated with a 100 nm-thick CeO2 overlayer exhibits an ultrahigh response (resistance ratio) of 68 toward 5 ppm ammonia with excellent gas selectivity, rapid response, reversibility, and humidity-independent sensing characteristics at room temperature. In addition, the sensing performance remains stable after repetitive bending and long-term operation. Moreover, the sensors exhibit significant response to the simulated exhaled breath of patients with H. pylori infection; the simulated breath contains 50 ppb NH3. The sensors thus show promising potential in detecting sub-parts per million-level NH3, regardless of humidity fluctuations, which can open up new applications in wearable devices for in situ medical diagnosis and indoor/outdoor environment monitoring.

15.
Acta Physiologica Sinica ; (6): 539-547, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-687797

ABSTRACT

Songbird has become an ideal model for studying motor learning due to its unique learned song behavior. It has been proved that song behavior is directly regulated by song control system in the forebrain of songbirds. There are lines of evidence to show that cholinergic transmitters and their receptors are distributed in song control system, and vocal control nuclei in song control system are innervated by cholinergic nerves from the central cholinergic system in basal forebrain, which can affect activities of vocal control nuclei through cholinergic transmitters, and then affect song behavior. Studies in mammals have confirmed that the central cholinergic system is involved in the regulation of motor behavior and neural process of motor learning. Elucidation of regulation of songbirds' song behavior by central cholinergic system would shed light on the neural mechanism of song motor control and song learning and memory in songbirds, and provide theoretical insights for researches on other animals' sensorimotor processes and human language learning. This review summarized recent progresses, including the research work of our laboratory, in the studies on the selectivity of cholinergic transmitters to their receptors and their effects on neuronal activities in vocal control nuclei of songbirds and provided valuable clues for revealing the regulation mechanism of central cholinergic system on songbirds' song behavior.

16.
ACS Appl Mater Interfaces ; 9(35): 29669-29676, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28770983

ABSTRACT

Hierarchical and hollow porous Fe2O3 nanoboxes (with an average edge length of ∼500 nm) were derived from metal-organic frameworks (MOFs) and the gas sensing characteristics were investigated. Sensors based on Fe2O3 nanoboxes exhibited a response (resistance ratio) of 1.23 to 0.25 ppm (ppm) hydrogen sulfide (H2S) at 200 °C, the response/recovery speed is fast and the selectivity to H2S is excellent. Remarkably, the sensor showed fully reversible response to 5 ppm of H2S at 50 °C, demonstrating its promise for operating at near room temperature, which is favorable for medical diagnosis and indoor/outdoor environment monitoring. The excellent performance of the Fe2O3 nanoboxes can be ascribed to the unique morphology with high specific surface area (SSA) and porous nanostructure.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-335719

ABSTRACT

The present study is to explore the material basis and mechanism of Erzhi Wan the prevented Alzheimer's disease by using network pharmacology. The key target of Alzheimer's disease was docked with the Erzhi Wan compounds, and the drugs-target combined with target-signal pathway network model was established by Cytoscape 3.2.1 software. Thirty compounds have a strong interaction with key target of Alzheimer's disease and three key pathways related with Wnt, MAPK and PI3K-Akt-mTOR. There are 5 ingredients such as quercetin,geraniol,beta-sitosterol,nerol,eriodictyol that could be verified from literature.This result initially revealed the material basis for Erzhi Wan for Alzheimer's disease and the mechanism in terms of three signaling pathways. The network pharmacology method found that the active ingredients of Erzhi Wan for Alzheimer's disease may be quercetin,geraniol,beta-sitosterol,nerol,and eriodictyol, and the mechanism may be related to three signal pathways including Wnt, MAPK, and PI3K-Akt-mTOR.

18.
Article in English | WPRIM (Western Pacific) | ID: wpr-61127

ABSTRACT

OBJECTIVE: MicroRNAs (miRNAs) play a vital role in pathogenesis and progression of many cancers, including cervical cancer. However, importance of serum level of miR-101 in cervical cancer has rarely been studied. In the present study, clinical significance and prognostic value of serum miR-101 for cervical cancer was investigated. METHODS: Association between miR-101 level in cervical cancer tissues and prognosis of patients was analyzed by using data retrieved from The Cancer Genome Atlas (TCGA) database, which was followed with our clinical study in which miR-101 serum level comparison between cervical cancer patients and healthy controls was conducted by real-time quantitative polymerase chain reaction (PCR). RESULTS: TCGA database demonstrated that miR-101 was down-regulated in cervical cancer tissues compared with normal cervical tissues, and univariate Cox regression analysis indicated that decreased miR-101 expression was a highly significant negative risk factor. Similar trend was found in the serum miR-101. Serum level of miR-101 was associated with International Federation of Gynecology and Obstetrics (FIGO) stage (p=0.003), lymph node metastasis (p=0.001), and serum squamous cell carcinoma antigen (SCC-Ag) level >4 (p=0.007). The overall survival time of cervical cancer patients with a higher level of serum miR-101 was significantly longer than that of patients with a lower level of serum miR-101. Moreover, multivariate Cox regression analysis indicated that the down-regulated serum level of miR-101 was an independent predictor for the unfavorable prognosis of cervical cancer. CONCLUSION: Serum level of miR-101 is closely associated with metastasis and prognosis of cervical cancer; and, hence could be a potential biomarker and prognostic predictor for cervical cancer.


Subject(s)
Humans , Carcinoma, Squamous Cell , Clinical Study , Disease Progression , Genome , Gynecology , Lymph Nodes , MicroRNAs , Neoplasm Metastasis , Obstetrics , Polymerase Chain Reaction , Prognosis , Risk Factors , Uterine Cervical Neoplasms
19.
Article in English | WPRIM (Western Pacific) | ID: wpr-88078

ABSTRACT

PURPOSE: Modafinil is a wake-promoting agent that has been proposed to improve cognitive performance at the preclinical and clinical levels. Since there is insufficient evidence for modafinil to be regarded as a cognitive enhancer, the aim of this study was to investigate the effects of chronic modafinil administration on behavioral learning in healthy adult rats. METHODS: Y-maze training was used to assess learning performance, and the whole-cell patch clamp technique was used to assess synaptic transmission in pyramidal neurons of the hippocampal CA1 region of rats. RESULTS: Intraperitoneal administration of modafinil at 200 mg/kg or 300 mg/kg significantly improved learning performance. Furthermore, perfusion with 1mM modafinil enhanced the frequency and amplitude of spontaneous postsynaptic currents and spontaneous excitatory postsynaptic currents in CA1 pyramidal neurons in hippocampal slices. However, the frequency and amplitude of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons were inhibited by treatment with 1mM modafinil. CONCLUSIONS: These results indicate that modafinil improves learning and memory in rats possibly by enhancing glutamatergic excitatory synaptic transmission and inhibiting GABAergic (gamma-aminobutyric acid-ergic) inhibitory synaptic transmission.


Subject(s)
Adult , Animals , Humans , Rats , CA1 Region, Hippocampal , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Learning , Memory , Neurons , Perfusion , Synaptic Potentials , Synaptic Transmission
20.
Article in English | WPRIM (Western Pacific) | ID: wpr-636883

ABSTRACT

In recent years, more attention has been paid to the role of the glutamate transporter 1 (GLT-1, EAAT2) in major depressive disorder (MDD). However, experimental data on brain GLT-1 levels are, to some extent, inconsistent in human postmortem and animal studies. These discrepancies imply that the role of GLT-1 in the pathophysiology of MDD and the action of antidepressants remain obscure. This work was designed to study the impact of chronic unpredictable stress (CUS) for 2 sessions per day for 35 days and four weeks of fluoxetine (FLX) on depressive-like behaviors in rats, as well as the concomitant expression of the GLT-1 protein in the hippocampus. Behavioral changes were assessed by the sucrose preference and open field tests. GLT-1 levels were detected by immunohistchemistry and Western blot analysis. Our study demonstrated that the animals exposed to CUS showed depressive-like behaviors and exhibited a significant decrease in GLT-1 expression in the hippocampus. Chronic FLX treatment reversed the behavioral deficits and the CUS-induced decrease in GLT-1 levels. Taken together, our results support the reduction of GLT-1 in human postmortem studies in MDD and suggest that GLT-1 may be involved in the antidepressant activity of FLX. Our studies further support the notion that GLT-1 is an attractive candidate molecule associated with the fundamental processes of MDD and may be a potential, and novel pharmacological target for the treatment of MDD.

SELECTION OF CITATIONS
SEARCH DETAIL
...