Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816532

ABSTRACT

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Telomerase , Telomere , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Cell Division/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/genetics , Gene Expression Regulation, Plant , Mutation , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation/genetics , Meristem/genetics , Meristem/metabolism
2.
Mol Cell Proteomics ; 23(5): 100760, 2024 May.
Article in English | MEDLINE | ID: mdl-38579929

ABSTRACT

We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.


Subject(s)
Proteome , Proteomics , Tandem Mass Spectrometry , Humans , Proteome/analysis , Proteomics/methods , Time Factors
3.
Obes Surg ; 34(4): 1102-1112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38363496

ABSTRACT

INTRODUCTION: Bariatric surgery is an effective intervention to reduce obesity and improve associated comorbidities. However, its effects on cognitive function are still the subject of debate. Given that the bioavailability of circulating metabolites can influence brain metabolism and cognitive performance, we aimed to assess the effects of bariatric surgery on plasma metabolic profiles and cognitive performance. METHODS: We recruited 26 women undergoing gastric bypass surgery. We conducted anthropometric assessments and collected plasma samples for metabolomic analysis. A set of 4 cognitive tests were used to evaluate cognitive performance. Participants were reevaluated 1 year post-surgery. RESULTS: After surgery, attention capacity and executive function were improved, while immediate memory had deteriorated. Regarding metabolic profile, reduction of beta-tocopherol and increase of serine, glutamic acid, butanoic acid, and glycolic acid were observed. To better understand the relationship between cognitive function and metabolites, a cluster analysis was conducted to identify more homogeneous subgroups based on the cognitive performance. We identified cluster 1, which did not show changes in cognitive performance after surgery, and cluster 2, which showed improved attention and executive function, but reduced performance in the immediate memory test. Thus, cluster 2 was more homogeneous group that replicated the results of non-clustered subjects. Analysis of the metabolic profile of cluster 2 confirmed serine, glutamic acid, and glycolic acid as potential metabolites associated with cognitive performance. CONCLUSIONS: Metabolites identified in this study have potential for biomarkers and alternative therapeutic target to prevent obesity-related cognitive decline. KEY POINTS: • Attention capacity and executive function were improved 12 months post bariatric surgery. • Immediate memory was worsened 12 months post bariatric surgery. • Serine, glutamic acid, and glycolic acid are potential metabolites linked to the alteration of cognitive performance.


Subject(s)
Bariatric Surgery , Glycolates , Obesity, Morbid , Humans , Female , Obesity, Morbid/surgery , Glutamic Acid , Treatment Outcome , Bariatric Surgery/methods , Obesity/surgery , Cognition , Serine
4.
bioRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38045259

ABSTRACT

Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence and structural context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.

5.
Res Sq ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37961382

ABSTRACT

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a - deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.

6.
Nat Commun ; 14(1): 6431, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833277

ABSTRACT

PPTC7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass and metabolic capacity with elevated hepatic triglyceride accumulation. Pptc7 knockout animals exhibit increased expression of the mitophagy receptors BNIP3 and NIX, and Pptc7-/- mouse embryonic fibroblasts (MEFs) display a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs, including multiple sites on BNIP3 and NIX, and our molecular studies demonstrate that PPTC7 can directly interact with and dephosphorylate these proteins. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that PPTC7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for PPTC7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.


Subject(s)
Mitochondrial Proteins , Mitophagy , Animals , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Fibroblasts/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Phosphoric Monoester Hydrolases/metabolism
7.
Int J Parasitol Parasites Wildl ; 22: 14-19, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37584011

ABSTRACT

Coatis (Nasua nasua) are wild carnivorous well adapted to anthropized environments especially important because they act as reservoirs hosts for many arthropod-borne zoonotic pathogens. Information about filarioids from coatis and associated Wolbachia spp. in Brazil is scant. To investigate the diversity of filarial nematodes, blood samples (n = 100 animals) were obtained from two urban areas in midwestern Brazil and analyzed using blood smears and buffy coats and cPCR assays based on the cox1, 12S rRNA, 18S rRNA, hsp70 and myoHC genes for nematodes and 16S rRNA for Wolbachia. When analyzing coati blood smears and buffy coats, 30% and 80% of the samples presented at least one microfilaria, respectively. Twenty-five cox1 sequences were obtained showing 89% nucleotide identity with Mansonella ozzardi. Phylogenetic analyses clustered cox1 sequences herein obtained within the Mansonella spp. clade. Sequences of both myoHC and two hsp70 genes showed 99.8% nucleotide identity with Mansonella sp. and clustered into a clade within Mansonella sp., previously detected in coatis from Brazil. Two blood samples were positive for Wolbachia, with a 99% nucleotide identity with Wolbachia previously found in Mansonella perstans, Mansonella ozzardi and Mansonella atelensis and in ectoparasites of the genus Pseudolynchia, Melophagus and Cimex. The study showed a high prevalence of Mansonella sp. in the coati population examined, suggesting that this animal species play a role as reservoirs of a novel, yet to be described, species within the Onchocercidae family.

8.
Brain Res Bull ; 197: 42-48, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37011815

ABSTRACT

Object recognition memory (ORM) allows identification of previously encountered items and is therefore crucial for remembering episodic information. In rodents, reactivation during recall in the presence of a novel object destabilizes ORM and initiates a Zif268 and protein synthesis-dependent reconsolidation process in the hippocampus that links the memory of this object to the reactivated recognition trace. Hippocampal NMDA receptors (NMDARs) modulate Zif268 expression and protein synthesis and regulate memory stability but their possible involvement in the ORM destabilization/reconsolidation cycle has yet to be analyzed in detail. We found that, in adult male Wistar rats, intra dorsal-CA1 administration of the non-subunit selective NMDAR antagonist AP5, or of the GluN2A subunit-containing NMDAR antagonist TCN201, 5 min after an ORM reactivation session in the presence of a novel object carried out 24 h post-training impaired retention 24 h later. In contrast, pre-reactivation administration of the GluN2B subunit-containing NMDAR antagonist RO25-6981 had no effect on ORM recall or retention but impeded the amnesia caused by Zif268 silencing and protein synthesis inhibition in dorsal CA1. Our results indicate that GluN2B-containing hippocampal NMDARs are necessary for ORM destabilization whereas GluN2A-containing NMDARs are involved in ORM reconsolidation, and suggest that modulation of the relative activity of these receptor subtypes during recall regulates ORM persistence.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Recognition, Psychology , Rats , Animals , Male , Receptors, N-Methyl-D-Aspartate/metabolism , Rats, Wistar , Mental Recall , Hippocampus/metabolism
9.
Int J Endocrinol ; 2023: 7625720, 2023.
Article in English | MEDLINE | ID: mdl-37101600

ABSTRACT

Objective: Obesity is one of the modifiable risk factors for dementia. Insulin resistance, the abundance of advanced glycated end-products, and inflammation are some of the mechanisms associated with the lower cognitive performance observed in obesity. This study aims to evaluate the cognitive function of subjects with distinct degrees of obesity, comparing class I and II obesity (OBI/II) to class III obesity (OBIII), and to investigate metabolic markers that can distinguish OBIII from OBI/II. Study Design. This is a cross-sectional study, in which 45 females with BMI varying from 32.8 to 51.9 kg/m2 completed a set of 4 cognitive tests (verbal paired-associate test, stroop color, digit span, and Toulouse-Pieron cancellation test) and their plasma metabolites, enzymes, and hormones related to glycemia, dyslipidemia, and liver function, as well as the biomarkers of iron status, were concomitantly analyzed. Results: OBIII showed lower scores in the verbal paired-associate test compared to OBI/II. In other cognitive tests, both groups showed similar performance. OBIII presented a lower iron status compared to OBI/II based on total iron binding capacity, degree of transferrin saturation, hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin. The levels of indicators for glycemia, liver function, and lipid metabolism were similar in both groups. Analysis of plasma metabolites showed that OBIII had lower levels of pyroglutamic acid, myoinositol, and aspartic acid and higher levels of D-ribose than OBI/II. Conclusion: Iron is an essential micronutrient for several metabolic pathways. Thus, iron dyshomeostasis observed in severe obesity may aggravate the cognitive impairment by altering metabolic homeostasis and enhancing oxidative stress. These findings can contribute to searching for biomarkers that indicate cognitive performance in the population with obesity.

10.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909604

ABSTRACT

Pptc7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass concomitant with elevation of the mitophagy receptors Bnip3 and Nix. Consistently, Pptc7-/- mouse embryonic fibroblasts (MEFs) exhibit a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs-including multiple sites on Bnip3 and Nix. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that Pptc7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for Pptc7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.

11.
Metabolites ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36984790

ABSTRACT

The emergence of bacterial drug resistance is often viewed as the next great health crisis of our time. While more antimicrobial agents are urgently needed, very few new antibiotics are currently in the production pipeline. Here, we aim to identify and characterize novel antimicrobial natural products from a model dioicous moss, Ceratodon purpureus. We collected secreted moss exudate fractions from two C. purpureus strains, male R40 and female GG1. Exudates from the female C. purpureus strain GG1 did not exhibit inhibitory activity against any tested bacteria. However, exudates from the male moss strain R40 exhibited strong inhibitory properties against several species of Gram-positive bacteria, including Staphylococcus aureus and Enterococcus faecium, though they did not inhibit the growth of Gram-negative bacteria. Antibacterial activity levels in C. purpureus R40 exudates significantly increased over four weeks of moss cultivation in liquid culture. Size fractionation experiments indicated that the secreted bioactive compounds have a relatively low molecular weight of less than 1 kDa. Additionally, the R40 exudate compounds are thermostable and not sensitive to proteinase K treatment. Overall, our results suggest that the bioactive compounds present in C. purpureus R40 exudates can potentially add new options for treating infections caused by antibiotic-resistant Gram-positive bacteria.

13.
Res Sq ; 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36711642

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies that includes steatosis, steatohepatitis (NASH) and fibrosis and is strongly associated with insulin resistance and type 2 diabetes. Changes in mitochondrial function are implicated in the pathogenesis of NAFLD, particularly in the transition from steatosis to NASH. Mitophagy is a mitochondrial quality control mechanism that allows for the selective removal of damaged mitochondria from the cell via the autophagy pathway. While past work demonstrated a negative association between liver fat content and rates of mitophagy, when changes in mitophagy occur during the pathogenesis of NAFLD and whether such changes contribute to the primary endpoints associated with the disease are currently poorly defined. We therefore undertook the studies described here to establish when alterations in mitophagy occur during the pathogenesis of NAFLD, as well as to determine the effects of genetic inhibition of mitophagy via conditional deletion of a key mitophagy regulator, PARKIN, on the development of steatosis, insulin resistance, inflammation and fibrosis. We find that loss of mitophagy occurs early in the pathogenesis of NAFLD and that loss of PARKIN hastens the onset but not severity of key NAFLD disease features. These observations suggest that loss of mitochondrial quality control in response to nutritional stress may contribute to mitochondrial dysfunction and the pathogenesis of NAFLD.

14.
J Sleep Res ; 32(1): e13664, 2023 02.
Article in English | MEDLINE | ID: mdl-35670262

ABSTRACT

Sleep is essential for the maintenance of health and systemic homeostasis. Decreased sleep time and sleep quality have been associated with a wide range of diseases. To evaluate the effects of obstructive sleep apnea (OSA) and total or selective rapid eye movement (REM) sleep deprivation on male reproductive function, we performed a three-arm parallel study with one pre-defined OSA group and a group of healthy volunteers who were then randomised into total or REM sleep deprivation groups. Questionnaires were completed and overnight polysomnography was undertaken, and blood and sperm samples were collected at the Sleep Institute, São Paulo, Brazil. OSA was diagnosed using questionnaires and polysomnography. Male sexual function was assessed through the questionnaires, blood tests, and semen samples. Data showed an association between OSA and lower circulating levels of total and free testosterone and high-density lipoproteins, as well as a lower proportion of healthy sperm cells and decreased sperm concentration, in comparison to volunteers. Volunteers subjected to either total or REM sleep deprivation had increased circulating levels of thyroid-stimulating hormone, insulin, and higher homeostatic model assessment of insulin resistance (HOMA-IR) values. Both sleep-deprived groups also shown decreased cholesterol, and low-density lipoproteins when compared to their baseline levels, but had no alterations in their spermograms. We observed a reduction in total testosterone following total sleep deprivation, but no effect after REM sleep deprivation. OSA was associated with a hormonal imbalance, which is probably linked with impaired reproductive function and associated comorbidities, such as sleep fragmentation/loss and obesity.


Subject(s)
Sleep Apnea, Obstructive , Sleep Initiation and Maintenance Disorders , Humans , Male , Sleep Deprivation/complications , Brazil , Semen , Sleep Apnea, Obstructive/diagnosis , Testosterone , Sleep Initiation and Maintenance Disorders/complications
15.
J Surg Oncol ; 127(4): 716-726, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36453464

ABSTRACT

BACKGROUND: Completion lymph node dissection (CLND) was the standard treatment for patients with melanoma with positive sentinel lymph nodes (SLN) until 2017 when data from the DeCOG-SLT and MLST-2 randomized trials challenged the survival benefit of this procedure. We assessed the contribution of patient, tumor and facility factors on the use of CLND in patients with surgically resected Stage III melanoma. METHODS: Using the National Cancer Database, patients who underwent surgical excision and were found to have a positive SLN from 2012 to 2017 were included. A multivariable mixed-effects logistic regression model with a random intercept for the facility was used to determine the effect of patient, tumor, and facility variables on the risk of CLND. Reference effect measures (REMs) were used to compare the contribution of contextual effects (unknown facility variables) versus measured variables on the variation in CLND use. RESULTS: From 2012 to 2017, the overall use of CLND decreased from 59.9% to 26.5% (p < 0.0001). Overall, older patients and patients with government-based insurance were less likely to undergo CLND. Tumor factors associated with a decreased rate of CLND included primary tumor location on the lower limb, decreasing depth, and mitotic rate <1. However, the contribution of contextual effects to the variation in CLND use exceeded that of the measured facility, tumor, time, and patient variables. CONCLUSIONS: There was a decrease in CLND use during the study period. However, there is still high variability in CLND use, mainly driven by unmeasured contextual effects.


Subject(s)
Melanoma , Sentinel Lymph Node , Skin Neoplasms , Humans , Sentinel Lymph Node Biopsy/methods , Multilocus Sequence Typing , Melanoma/pathology , Skin Neoplasms/pathology , Lymph Node Excision/methods , Sentinel Lymph Node/surgery , Sentinel Lymph Node/pathology
16.
Front Behav Neurosci ; 16: 1052124, 2022.
Article in English | MEDLINE | ID: mdl-36578877

ABSTRACT

c-Jun N-terminal kinase (JNK) phosphorylates the transcription factor c-Jun in response to stress stimuli and contributes to both hippocampal synaptic plasticity and memory processing in mammals. Object recognition memory (ORM) is essential for remembering facts and events. In rodents, ORM consolidation and reconsolidation require a functional hippocampus. However, the possible involvement of hippocampal JNK on ORM processing has not yet been studied. Here we show that when injected into dorsal CA1 5 min, but not 6 h, after training adult male rats in the novel object recognition learning task, the JNK inhibitor SP600125 impaired ORM for at least 7 days without affecting exploratory activity, short-term ORM retention, or the functional integrity of the hippocampus. SP600125 did not hinder ORM retention when given in CA1 after a memory reactivation session carried out 24 h post-training in the presence of the same two objects presented during the training session, but caused time-dependent amnesia when one of the objects presented at training was replaced by a different but behaviorally equivalent novel one. Taken together, our results indicate that hippocampal JNK activity is necessary for ORM consolidation and reconsolidation but not for ORM recall or short-term retention.

17.
Ecol Evol ; 12(10): e9350, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36203639

ABSTRACT

Species-specific responses to landscape configuration and landscape composition have been studied extensively. However, little work has been done to compare intraspecific differences in habitat preferences. Bats have potential as good bioindicator taxa in woodland habitats. Therefore, studying sex differences in responses to woodland and the wider landscape can allow us to gain insight into the relative importance of these habitats for both bats and other taxa. In this study, we aimed to test the predictions that (i) habitat type and connectivity will influence the probability of recording female bats in woodlands and (ii) sex differences in response to habitat type and connectivity will be species-specific. Bat capture data was collected in 206 woodlands over 3 years in England. The probability of detecting females relative to males was modeled in response to a range of woodland characteristics and landscape metrics for six bat species. We recorded sex differences in responses to landscape features in three species. We found a higher probability of capturing female Myotis nattereri in woodlands that were surrounded by a higher proportion of improved grasslands, whereas female Myotis mystacinus were less likely to be recorded in woodlands surrounded by semi-natural vegetation. Female Plecotus auritus were more likely to be recorded in isolated woodlands with less connectivity to other woodlands and where agriculture dominated the surrounding landscape. Our findings indicate that sexual segregation occurs across several UK bat species in response to landscape connectivity and composition. Sexual segregation in response to landscape characteristics in bats should therefore be an important consideration in the management of fragmented agricultural landscapes.

18.
Physiol Rep ; 10(15): e15415, 2022 08.
Article in English | MEDLINE | ID: mdl-35924321

ABSTRACT

Left ventricular diastolic dysfunction is a structural and functional condition that precedes the development of heart failure with preserved ejection fraction (HFpEF). The etiology of diastolic dysfunction includes alterations in fuel substrate metabolism that negatively impact cardiac bioenergetics, and may precipitate the eventual transition to heart failure. To date, the molecular mechanisms that regulate early changes in fuel metabolism leading to diastolic dysfunction remain unclear. In this report, we use a diet-induced obesity model in aged mice to show that inhibitory lysine acetylation of the pyruvate dehydrogenase (PDH) complex promotes energetic deficits that may contribute to the development of diastolic dysfunction in mouse hearts. Cardiomyocyte-specific deletion of the mitochondrial lysine acetylation regulatory protein GCN5L1 prevented hyperacetylation of the PDH complex subunit PDHA1, allowing aged obese mice to continue using pyruvate as a bioenergetic substrate in the heart. Our findings suggest that changes in mitochondrial protein lysine acetylation represent a key metabolic component of diastolic dysfunction that precedes the development of heart failure.


Subject(s)
Cardiomyopathies , Heart Failure , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Diet, High-Fat , Lysine/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Pyruvate Dehydrogenase Complex/metabolism , Pyruvates , Stroke Volume
19.
Molecules ; 27(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889484

ABSTRACT

Reactions of 3-(furan-2-yl)propenoic acids and their esters with arenes in Brønsted superacid TfOH affords products of hydroarylation of the carbon-carbon double bond, 3-aryl-3-(furan-2-yl)propenoic acid derivatives. According to NMR and DFT studies, the corresponding O,C-diprotonated forms of the starting furan acids and esters should be reactive electrophilic species in these transformations. Starting compounds and their hydroarylation products, at a concentration of 64 µg/mL, demonstrate good antimicrobial activity against yeast-like fungi Candida albicans. Apart from that, these compounds suppress Escherichia coli and Staphylococcus aureus.


Subject(s)
Anti-Infective Agents , Propionates , Anti-Infective Agents/chemistry , Carbon , Escherichia coli , Esters/pharmacology , Furans/pharmacology , Microbial Sensitivity Tests
20.
Antibiotics (Basel) ; 11(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892395

ABSTRACT

Plants synthetize a large spectrum of secondary metabolites with substantial structural and functional diversity, making them a rich reservoir of new biologically active compounds. Among different plant lineages, the evolutionarily ancient branch of non-vascular plants (Bryophytes) is of particular interest as these organisms produce many unique biologically active compounds with highly promising antibacterial properties. Here, we characterized antibacterial activity of metabolites produced by different ecotypes (strains) of the model mosses Physcomitrium patens and Sphagnum fallax. Ethanol and hexane moss extracts harbor moderate but unstable antibacterial activity, representing polar and non-polar intracellular moss metabolites, respectively. In contrast, high antibacterial activity that was relatively stable was detected in soluble exudate fractions of P. patens moss. Antibacterial activity levels in P. patens exudates significantly increased over four weeks of moss cultivation in liquid culture. Interestingly, secreted moss metabolites are only active against a number of Gram-positive, but not Gram-negative, bacteria. Size fractionation, thermostability and sensitivity to proteinase K assays indicated that the secreted bioactive compounds are relatively small (less than <10 kDa). Further analysis and molecular identification of antibacterial exudate components, combined with bioinformatic analysis of model moss genomes, will be instrumental in the identification of specific genes involved in the bioactive metabolite biosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...