Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37345056

ABSTRACT

More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.

2.
Front Oncol ; 11: 727010, 2021.
Article in English | MEDLINE | ID: mdl-34722270

ABSTRACT

More than 40 tyrosine kinase inhibitors (TKIs) have received hematological or oncological indications over the past 20 years, following the approval of imatinib, and many others are currently being tested in clinical and preclinical level. Beyond their common toxicities, no certain agent from this large class of molecularly targeted therapies was strongly associated with "off-target" impairment of neuromuscular transmission, and although myasthenia gravis (MG) is a well-characterized autoimmune disorder, only few sporadic events proven by serologically detected causative autoantibodies and/or by positive electrophysiological tests are reported in the literature. Herein, we present the first case of anti-MUSK (+) MG in a woman with metastatic BRAF-mutant melanoma after long-term treatment with dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor). Triggered by this report, a systematic literature review was conducted, summarizing all other cancer cases that developed MG, after exposure to any type of targeted agent and regardless of the underlying malignancy. All available data on the clinical diagnosis, the potential of administered TKIs to induce a seropositive myasthenic syndrome, the immune and non-immune-mediated pathogenesis of postsynaptic damage, and the challenging management of this neuromuscular toxicity were collected and discussed. In the presented case, MG was confirmed by both autoantibodies and nerve-conduction tests, while its reactivation after TKIs rechallenge supports a more than coincidental association. The following review identified 12 cancer cases with TKI-related MG in six case reports and one case series. In most of them, the myasthenia diagnosis was challenging, since the clinical symptomatology of fatigable weakness was not corroborating with consistent laboratory and electrophysiological findings. In fact, anti-AchR titers were positive in five and anti-MuSK only in the abovementioned individual. The symptomatology corresponded to TKI discontinuation and standard treatment with pyridostigmine and prednisolone; intravenous immunoglobulin was added only in three, and two required mechanical ventilation. In an era where TKIs will be prescribed more frequently for various malignancies, even in combinations with immune-checkpoint inhibitors, this report synthesizes their risk for neuromuscular complications and increases the clinicians' awareness in order to extend the on-treatment and overall survival of TKI-treated cancer patients.

3.
Vaccines (Basel) ; 9(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34696218

ABSTRACT

In the era of precision medicine, antibody-based therapeutics are rapidly enriched with emerging advances and new proof-of-concept formats. In this context, antibody-drug conjugates (ADCs) have evolved to merge the high selectivity and specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of attached payloads. So far, ten ADCs have been approved by FDA for oncological indications and many others are currently being tested in clinical and preclinical level. This paper summarizes the essential components of ADCs, from their functional principles and structure up to their limitations and resistance mechanisms, focusing on all latest bioengineering breakthroughs such as bispecific mAbs, dual-drug platforms as well as novel linkers and conjugation chemistries. In continuation of our recent review on anticancer implication of ADC's technology, further insights regarding their potential usage outside of the oncological spectrum are also presented. Better understanding of immunoconjugates could maximize their efficacy and optimize their safety, extending their use in everyday clinical practice.

4.
Ther Adv Med Oncol ; 12: 1758835920962997, 2020.
Article in English | MEDLINE | ID: mdl-33088347

ABSTRACT

Antibody-drug conjugates (ADCs) are designed to manipulate the toxic efficacy of specific chemotherapeutic compounds, employing the high affinity of antibody-mediated delivery so as to drive them selectively to target cancer cells. These immunoconjugates encompass the general tendency towards precision medicine and avert the systemic toxicities of conventional chemotherapy, accomplishing an improved therapeutic index. Cumulative experience acquired from first-generation ADCs offers new perspectives to these promising therapeutic modalities for various hematological and solid cancers and propels their clinical development in a faster-than-ever pace, as indicated by the approval of four novel ADCs during the last year. This paper aims to provide an up-to-date overview of the eight ADCs approved by the US Food and Drug Administration and their current indications in oncological practice. Starting from their bio-pharmaceutical background, we track their clinical evolution, with an emphasis on the pivotal trials that led to their commercial release. Late-stage studies examining these eight ADCs in other-than-approved settings as well as the investigation of potential new candidates are also reviewed. In the close future, more data are expected to expand ADCs' oncological utility and to further reshape their role in cancer therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...