Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Public Health ; 234: 84-90, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968928

ABSTRACT

OBJECTIVE: The importance of health literacy in medical imaging is well recognized, yet the current landscape remains inadequately understood. This study aims to explore the extent of health literacy studies contextualized to medical imaging. STUDY DESIGN: Scoping review. METHODS: A scoping review was conducted using three online bibliographic databases namely, PubMed, ScienceDirect, and CINAHL. We have adopted the concept of health literacy, as a clinical risk and personal asset, to guide this review. RESULTS: Of 311 unique articles, 39 met our selection criteria. Five themes (categories) were identified by the authors: appropriate communication with patients who receive medical imaging test results, appropriate usage of medical imaging, classes and characteristics of eHealth literacy, disease/deterioration prevention, and patient education. Additionally, 17 health literacy assessment tools were identified, including 11 original creations. Finally, 11 recommendations have emerged from this scoping review, offering valuable insights into methods, considerations, and strategies for promoting health literacy. CONCLUSIONS: Health literacy studies in medical imaging cover both clinical and public health perspectives, benefiting diverse populations, regardless of underlying medical conditions. Notably, the majority of assessment tools used in these studies were author-generated, hindering cross-study comparisons. Given the innate capacity of medical images to convey intuitive information, those images do not solely benefit the patients who are given medical imaging examinations, but they also hold significant potential to enhance public health literacy. Health literacy and medical imaging are closely associated and mutually reinforce each other.

2.
Int J Mol Sci ; 24(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446302

ABSTRACT

Peripheral artery disease (PAD) is a common and debilitating condition characterized by the narrowing of the limb arteries, primarily due to atherosclerosis. Non-invasive multi-modality imaging approaches using computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging have emerged as valuable tools for assessing PAD atheromatous plaques and vessel walls. This review provides an overview of these different imaging techniques, their advantages, limitations, and recent advancements. In addition, this review highlights the importance of molecular markers, including those related to inflammation, endothelial dysfunction, and oxidative stress, in PAD pathophysiology. The potential of integrating molecular and imaging markers for an improved understanding of PAD is also discussed. Despite the promise of this integrative approach, there remain several challenges, including technical limitations in imaging modalities and the need for novel molecular marker discovery and validation. Addressing these challenges and embracing future directions in the field will be essential for maximizing the potential of molecular and imaging markers for improving PAD patient outcomes.


Subject(s)
Atherosclerosis , Peripheral Arterial Disease , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Peripheral Arterial Disease/diagnostic imaging , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging , Multimodal Imaging , Positron-Emission Tomography/methods
3.
Comput Biol Med ; 157: 106746, 2023 05.
Article in English | MEDLINE | ID: mdl-36924736

ABSTRACT

PURPOSES: The study aimed to optimize diffusion-weighted imaging (DWI) image acquisition and analysis protocols in calf muscles by investigating the effects of different model-fitting methods, image quality, and use of high b-value and constraints on parameters of interest (POIs). The optimized modeling methods were used to select the optimal combinations of b-values, which will allow shorter acquisition time while achieving the same reliability as that obtained using 16 b-values. METHODS: Test-retest baseline and high-quality DWI images of ten healthy volunteers were acquired on a 3T MR scanner, using 16 b-values, including a high b-value of 1200 s/mm2, and structural T1-weighted images for calf muscle delineation. Three and six different fitting methods were used to derive ADC from monoexponential (ME) model and Dd, fp, and Dp from intravoxel incoherent motion (IVIM) model, with or without the high b-value. The optimized ME and IVIM models were then used to determine the optimal combinations of b-values, obtainable with the least number of b-values, using the selection criteria of coefficient of variance (CV) ≤10% for all POIs. RESULTS: The find minimum multivariate algorithm was more flexible and yielded smaller fitting errors. The 2-steps fitting method, with fixed Dd, performed the best for IVIM model. The inclusion of high b-value reduced outliers, while constraints improved 2-steps fitting only. CONCLUSIONS: The optimal numbers of b-values for ME and IVIM models were nine and six b-values respectively. Test-retest reliability analyses showed that only ADC and Dd were reliable for calf diffusion evaluation, with CVs of 7.22% and 4.09%.


Subject(s)
Diffusion Magnetic Resonance Imaging , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Perfusion , Motion , Diffusion
5.
J Med Imaging Radiat Sci ; 52(4S): S83-S95, 2021 12.
Article in English | MEDLINE | ID: mdl-34344633

ABSTRACT

INTRODUCTION: Modern radiation therapy undergraduate education comprises the illustration of theoretical, technical concepts in a classroom setting, coupled with the acquisition of practical handling and patient communication skills within the clinical environment. In recent years, there has been renewed interest in the application of virtual environments to education, despite ongoing inconclusive evidence on the use of virtual environments for enhancing student educational achievement. AIM AND OBJECTIVES: The aim of our research is to evaluate a custom-built 3D virtual radiation oncology department created within Second Life®, an online virtual world, as an alternative to traditional physical classroom-based didactic instruction, in tandem with a Virtual Environment for Radiotherapy Training (VERT) system, for the peer support and training of junior radiation therapy students in their first and second year of undergraduate studies. To achieve this aim, we investigated learning achievement outcomes, knowledge retention over a 2-week time interval and learner self-perceived confidence post-instruction, using both quantitative and qualitative analysis. METHODS: Institutional ethics approval was granted for an exempted review. Participants were currently enrolled undergraduate Year 1 and Year 2 students at our institution. Student participants were randomised into two groups; the control group attended a face-to-face classroom session centred on the illustration of theoretical, technical concepts, while the intervention group attended a virtual classroom session online on Second Life®, where similar content was delivered. Both groups then attended a VERT practical session to acquire practical handling and communication skills in radiation therapy. Upon completion of the sessions, confidence surveys, knowledge-based written and practical assessments were administered to the student participants. RESULTS: We found that the instructional session conducted within the custom-built 3D virtual radiation oncology department in Second Life® compared to the traditional didactic classroom setting increased undergraduate Year 1 radiation therapy students' perceived confidence to a greater extent compared to Year 2 students, in performing radiation therapy treatment procedures. In addition, our findings revealed that overall learning achievement outcomes and knowledge retention scores between Second Life® and non- Second Life® student participants were closely similar and statistically insignificant. Thematic analysis of the confidence survey questionnaires revealed that the students in general desired more clinical hands-on practice. DISCUSSION: Second Life® is equally effective in disseminating theoretical, technical course content delivery to undergraduate radiation therapy students. The use of virtual environments appears to have increased the perceived confidence of the Year 1 undergraduate students to a greater extent compared to the Year 2 undergraduates, suggesting that the adoption of virtual environments early in the students' educational journey can have a positive effect on students' learning experience. CONCLUSIONS AND RECOMMENDATIONS: The development and use of our custom-built Second Life® radiation oncology department provides a novel way of delivering remote, virtual training instruction to undergraduate radiation therapy students over traditional, didactic classroom instructional delivery. We recommend, based on the results of this pilot study, that future research can involve a larger study sample of undergraduate RT students, to explore both the short-term and long-term impact of virtual environments on student learning outcomes across their enrolled years of study. This would in turn mean progressive attempts to revamp our existing curricula structure, to deliberately incorporate the use of virtual environments, especially during early undergraduate years, towards enhanced modern RT education.


Subject(s)
Curriculum , Learning , Humans , Pilot Projects , Students , User-Computer Interface
6.
Australas Phys Eng Sci Med ; 39(2): 423-30, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27098157

ABSTRACT

Coronary angiography is a procedure used in the diagnosis and intervention of coronary heart disease. The procedure is often considered one of the highest dose diagnostic procedures in clinical use. Despite this, there is minimal use of dosimeters within angiographic catheterisation laboratories due to challenges resulting from their implementation. The aim of this study was to compare entrance dose delivery across locally commissioned c-arms to assess the need for real-time dosimetry solutions during angiographic procedures. The secondary aim of this study was to establish a calibration method for the MOSkin dosimeter that accurately produces entrance dose values from the clinically sampled beam qualities and energies. The MOSkin is a real-time dosimeter used to measure the skin dose delivered by external radiation beams. The suitability of the MOSkin for measurements in the angiographic catheterisation laboratory was assessed. Measurements were performed using a 30 × 30 × 30 cm(3) PMMA phantom positioned at the rotational isocenter of the c-arm gantry. The MOSkin calibration factor was established through comparison of the MOSkin response to EBT2 film response. Irradiation of the dosimeters was performed using several clinical beam qualities ranging in energy from 70 to 105 kVp. A total of four different interventional c-arm machines were surveyed and compared using the MOSkin dosimeter. The phantom was irradiated from a normal angle of incidence using clinically relevant protocols, field sizes and source to image detector distance values. The MOSkin was observed to be radiotranslucent to the c-arm beam in all clinical environments. The MOSkin response was reproducible to within 2 % of the average value across repeated measurements for each beam setting. There were large variations in entrance dose delivery to the phantom between the different c-arm machines with the highest observed cine-acquisition entrance dose rate measuring 326 % higher than the lowest measured cine-acquisition entrance dose rate and with the highest measured fluoroscopic entrance dose rate measuring 346 % higher than the lowest measured fluoroscopic entrance dose rate. This comparison of entrance dose delivery across local clinical c-arms demonstrated the disparity in entrance dose delivery across catheterisation laboratories and outlined a need for real-time dose monitoring systems for patients during angiographic procedures. Through use of our calibration method, an average MOSkin calibration of 7.37 mV/cGy was established. The calibration method allowed entrance dose to be measured across a range of beam energies and beam qualities without the input of the c-arm beam characteristics. This calibration factor was proven to reproduce entrance dose values to within 5 % value of the reference dosimeter's response, suggesting potential for further studies and utilisation of the dosimeter in this field.


Subject(s)
Angiography , Computer Systems , Radiation Dosimeters , Skin/radiation effects , Dose-Response Relationship, Radiation , Fluoroscopy , Humans , Phantoms, Imaging , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...