Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 449
Filter
1.
J Intensive Care Med ; : 8850666241252758, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748544

ABSTRACT

Background: The peripheral perfusion index (PI) reflects microcirculatory blood flow perfusion and indicates the severity and prognosis of sepsis. Method: The cohort comprised 208 patients admitted to the intensive care unit (ICU) with infection, among which 117 had sepsis. Demographics, medication history, ICU variables, and laboratory indexes were collected. Primary endpoints were in-hospital mortality and 28-day mortality. Secondary endpoints included organ function variables (coagulation function, liver function, renal function, and myocardial injury), lactate concentration, mechanical ventilation time, and length of ICU stay. Univariate and multivariate analyses were conducted to assess the associations between the PI and clinical outcomes. Sensitivity analyses were performed to explore the associations between the PI and organ functions in the sepsis and nonsepsis groups. Result: The PI was negatively associated with in-hospital mortality (odds ratio [OR] 0.29, 95% confidence interval [CI] 0.15 to 0.55), but was not associated with 28-day mortality. The PI was negatively associated with the coagulation markers prothrombin time (PT) (ß -0.36, 95% CI -0.59 to 0.13) and activated partial thromboplastin time (APTT) (ß -1.08, 95% CI -1.86 to 0.31), and the myocardial injury marker cardiac troponin I (cTnI) (ß -2085.48, 95% CI -3892.35 to 278.61) in univariate analysis, and with the PT (ß -0.36, 95% CI -0.60 to 0.13) in multivariate analysis. The PI was negatively associated with the lactate concentration (ß -0.57, 95% CI -0.95 to 0.19), mechanical ventilation time (ß -23.11, 95% CI -36.54 to 9.69), and length of ICU stay (ß -1.28, 95% CI -2.01 to 0.55). Sensitivity analyses showed that the PI was significantly associated with coagulation markers (PT and APTT) and a myocardial injury marker (cTnI) in patients with sepsis, suggesting that the associations between the PI and organ function were stronger in the sepsis group than the nonsepsis group. Conclusion: The PI provides new insights for assessing the disease severity, short-term prognosis, and organ function damage in ICU patients with sepsis, laying a theoretical foundation for future research.

2.
Cell Rep ; 43(5): 114223, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748879

ABSTRACT

Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.


Subject(s)
Bacterial Proteins , Burkholderia cenocepacia , Coenzyme A Ligases , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Quorum Sensing , Quorum Sensing/genetics , Burkholderia cenocepacia/pathogenicity , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/metabolism , Virulence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Animals , Signal Transduction , Fatty Acids, Monounsaturated/metabolism , Mice , Protein Binding , Lauric Acids/metabolism
3.
iScience ; 27(5): 109690, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38660402

ABSTRACT

Expression of the type III secretion system (T3SS) in Pseudomonas aeruginosa is exquisitely controlled by diverse environmental or host-related signals such as calcium (Ca2+), however, the signal transduction pathways remain largely elusive. In this study, we reported that FleR, the response regulator of the two-component system FleS/FleR, inhibits T3SS gene expression and virulence of P. aeruginosa uncoupled from its cognate histidine kinase FleS. Interestingly, FleR was found to repress T3SS gene expression under Ca2+-rich conditions independently of its DNA-binding domain. FleR activates the elevation of intracellular c-di-GMP contents and FleQ serves as the c-di-GMP effector to repress T3SS gene expression through the Gac/Rsm pathway. Remarkably, we found that AmrZ, a member of the FleR regulon, inhibits T3SS gene expression by directly targeting the promoter of exsCEBA in an expression level-dependent manner. This study revealed an intricate regulatory network that connects P. aeruginosa T3SS gene expression to the Ca2+ signal.

4.
Respir Res ; 25(1): 154, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566093

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation. Subsequent mechanistic studies revealed that overexpression of NR2F2 alleviated DNA damage in lung epithelial cells and inhibited cell senescence. Adenovirus-mediated Nr2f2 overexpression attenuated bleomycin-induced lung fibrosis and cell senescence in mice. In summary, these data demonstrate that NR2F2 is involved in lung epithelial cell senescence, and targeting NR2F2 may be a promising therapeutic approach against lung cell senescence and fibrosis.


Subject(s)
Cellular Senescence , Idiopathic Pulmonary Fibrosis , Animals , Mice , Bleomycin/adverse effects , Epithelial Cells/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/metabolism
5.
BMC Anesthesiol ; 24(1): 128, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575875

ABSTRACT

BACKGROUND: Elevated central venous pressure (CVP) is deemed as a sign of right ventricular (RV) dysfunction. We aimed to characterize the echocardiographic features of RV in septic patients with elevated CVP, and quantify associations between RV function parameters and 30-day mortality. METHODS: We retrospectively reviewed a cohort of septic patients with CVP ≥ 8 mmHg in a tertiary hospital intensive care unit. General characteristics and echocardiographic parameters including tricuspid annular plane systolic excursion (TAPSE), pulmonary vascular resistance (PVR) as well as prognostic data were collected. Associations between RV function parameters and 30-day mortality were assessed using Cox regression models. RESULTS: Echocardiography was performed in 244 septic patients with CVP ≥ 8 mmHg. Echocardiographic findings revealed that various types of abnormal RV function can occur individually or collectively. Prevalence of RV systolic dysfunction was 46%, prevalence of RV enlargement was 34%, and prevalence of PVR increase was 14%. In addition, we collected haemodynamic consequences and found that prevalence of systemic venous congestion was 16%, prevalence of RV-pulmonary artery decoupling was 34%, and prevalence of low cardiac index (CI) was 23%. The 30-day mortality of the enrolled population was 24.2%. In a Cox regression analysis, TAPSE (HR:0.542, 95% CI:0.302-0.972, p = 0.040) and PVR (HR:1.384, 95% CI:1.007-1.903, p = 0.045) were independently associated with 30-day mortality. CONCLUSIONS: Echocardiographic findings demonstrated a high prevalence of RV-related abnormalities (RV enlargement, RV systolic dysfunction and PVR increase) in septic patients with elevated CVP. Among those echocardiographic parameters, TAPSE and PVR were independently associated with 30-day mortality in these patients.


Subject(s)
Sepsis , Ventricular Dysfunction, Right , Humans , Central Venous Pressure , Heart Ventricles/diagnostic imaging , Retrospective Studies , Echocardiography , Hypertrophy, Right Ventricular , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right , Stroke Volume
6.
Cancer Med ; 13(8): e7215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659392

ABSTRACT

OBJECTIVES: The recommended treatment for limited-stage small-cell lung cancer (LS-SCLC) is a combination of thoracic radiotherapy (TRT) and etoposide plus cisplatin (EP) chemotherapy, typically administered over 4-6 cycles. Nonetheless, the optimal duration of chemotherapy is still not determined. This study aimed to compare the outcomes of patients with LS-SCLC who received either 6 cycles or 4-5 cycles of EP chemotherapy combined with TRT. MATERIALS AND METHODS: In this retrospective analysis, we utilized data from our prior prospective trial to analyze the outcomes of 265 LS-SCLC patients who received 4-6 courses of EP combined with concurrent accelerated hyperfractionated TRT between 2002 and 2017. Patients were categorized into two groups depending on their number of chemotherapy cycles: 6 or 4-5 cycles. To assess overall survival (OS) and progression-free survival (PFS), we employed the Kaplan-Meier method after conducting propensity score matching (PSM). RESULTS: Among the 265 LS-SCLC patients, 60 (22.6%) received 6 cycles of EP chemotherapy, while 205 (77.4%) underwent 4-5 cycles. Following PSM (53 patients for each group), the patients in the 6 cycles group exhibited a significant improvement in OS and PFS in comparison to those in the 4-5 cycles group [median OS: 29.8 months (95% confidence interval [CI], 23.6-53.1 months) vs. 22.7 months (95% CI, 20.8-29.1 months), respectively, p = 0.019; median PFS: 17.9 months (95% CI, 13.7-30.5 months) vs. 12.0 months (95% CI, 9.8-14.2 months), respectively, p = 0.006]. The two-year and five-year OS rates were 60.38% and 29.87% in the 6 cycles group, whereas 47.17% and 15.72% in the 4-5 cycles group, respectively. CONCLUSION: Patients diagnosed with LS-SCLC who were treated with EP regimen chemotherapy combined with TRT exhibited notably enhanced survival when administered 6 cycles of chemotherapy, as compared to those who underwent only 4-5 cycles.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Chemoradiotherapy , Cisplatin , Etoposide , Lung Neoplasms , Propensity Score , Small Cell Lung Carcinoma , Humans , Male , Female , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/radiotherapy , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Etoposide/administration & dosage , Etoposide/therapeutic use , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Aged , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Chemoradiotherapy/methods , Retrospective Studies , Prospective Studies , Neoplasm Staging , Adult , Progression-Free Survival , Drug Administration Schedule
7.
Int J Biol Sci ; 20(5): 1578-1601, 2024.
Article in English | MEDLINE | ID: mdl-38481806

ABSTRACT

Background: The application of chimeric antigen receptor (CAR) NK cells in solid tumors is hindered by lack of tumor-specific targets and inefficient CAR-NK cell efficacy. Claudin-6 (CLDN6) has been reported to be overexpressed in ovarian cancer and may be an attractive target for CAR-NK cells immunotherapy. However, the feasibility of using anti-CLDN6 CAR-NK cells to treat ovarian cancer remains to be explored. Methods: CLDN6 expression in primary human ovarian cancer, normal tissues and cell lines were detected by immunohistochemistry and western blot. Two types of third-generation CAR NK-92MI cells targeting CLDN6, CLDN6-CAR1 NK-92MI cells with domains containing self-activated elements (NKG2D, 2B4) and CLDN6-CAR2 NK-92MI cells with classical domains (CD28, 4-1BB) were constructed by lentivirus transfection, sorted by flow cytometry and verified by western blot and qPCR. OVCAR-3, SK-OV-3, A2780, Hey and PC-3 cells expressing the GFP and luciferase genes were transduced. Subcutaneous and intraperitoneal tumor models were established via NSG mice. The ability of CLDN6-CAR NK cells to kill CLDN6-positive ovarian cancer cells were evaluated in vitro and in vivo by live cell imaging and bioluminescence imaging. Results: Both CLDN6-CAR1 and CLDN6-CAR2 NK-92MI cells could specifically killed CLDN6-positive ovarian cancer cells (OVCAR-3, SK-OV-3, A2780 and Hey), rather than CLDN6 negative cell (PC-3), in vitro. CLDN6-CAR1 NK-92MI cells with domains containing self-activated elements (NKG2D, 2B4) exhibited stronger cytotoxicity than CLDN6-CAR2 NK-92MI cells with classical domains (CD28, 4-1BB). Furthermore, CLDN6-CAR1 NK cells could effectively eliminate ovarian cancer cells in subcutaneous and intraperitoneal tumor models. More importantly, CAR-NK cells combined with immune checkpoint inhibitors, anti-PD-L1, could synergistically enhance the antitumor efficacy of CLDN6-targeted CAR-NK cells. Conclusions: These results indicate that CLDN6-CAR NK cells possess strong antitumor activity and represent a promising immunotherapeutic modality for ovarian cancer.


Subject(s)
Claudins , Ovarian Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Female , Receptors, Chimeric Antigen/genetics , Ovarian Neoplasms/therapy , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Apoptosis , NK Cell Lectin-Like Receptor Subfamily K/metabolism , CD28 Antigens/metabolism , Killer Cells, Natural , Immunotherapy/methods , Immunotherapy, Adoptive/methods
8.
Am J Transl Res ; 16(1): 323-332, 2024.
Article in English | MEDLINE | ID: mdl-38322567

ABSTRACT

BACKGROUND: The effectiveness of critical care ultrasound has been demonstrated and training for it is urgent. Critical Care Ultrasound Study Group (CCUSG) has been dedicated to ultrasound training. The aim of the study was to evaluate course structure and training effect and provide improvement suggestions for future training. METHODS: A multicenter retrospective study was conducted. All participants went through a 2-day training curriculum based on the critical care ultrasonic examination (CCUE) protocol. Pre- and post-class evaluation were applied and data were collected. Non-parametric tests were adopted for the comparison, and a Generalized Linear Model (GLM) was used for further analysis. RESULTS: A total number of 792 trainees, with a mean age of 35.8, participated in the study. There were more males in the study population. Most of the trainees were attendings, and most of them had bachelor's degrees, worked at tertiary hospitals and had a mean working experience of 6.9 years. The scores of all trainees were improved to various degrees after the course. An increase from 50% to 72% (P≤0.001) was seen in theory test scores. All the competency assessment scores, including IAS (34% to 50% for cardiac images and 30% to 60% for pulmonary images), IPS (30% to 50%) and AAS (31% to 44%), were improved. A questionnaire after class suggested that 88.0% of the participants found the training course very useful. CONCLUSION: 2-day training course can improve the ability of physicians to assess critically ill patients with the help of the ultrasound.

9.
Cancer Immunol Immunother ; 73(3): 55, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366287

ABSTRACT

BACKGROUND: For patients with unresectable locally advanced esophageal squamous cell carcinoma (ESCC), concurrent chemoradiotherapy (CCRT) is the current standard treatment; however, the prognosis remains poor. Immunotherapy combined with chemotherapy has demonstrated improved survival outcomes in advanced ESCC. Nevertheless, there is a lack of reports on the role of induction immunotherapy plus chemotherapy prior to CCRT for unresectable locally advanced ESCC. Therefore, this study aimed to evaluate the efficacy and safety of induction immunotherapy plus chemotherapy followed by definitive chemoradiotherapy in patients with unresectable locally advanced ESCC. METHODS: This study retrospectively collected clinical data of patients diagnosed with locally advanced ESCC who were treated with radical CCRT between 2017 and 2021 at our institution. The patients were divided into two groups: an induction immunotherapy plus chemotherapy group (induction IC group) or a CCRT group. To assess progression-free survival (PFS) and overall survival (OS), we employed the Kaplan-Meier method after conducting propensity score matching (PSM). RESULTS: A total of 132 patients with unresectable locally advanced ESCC were included in this study, with 61 (45.26%) patients in the induction IC group and 71 (54.74%) patients in the CCRT group. With a median follow-up of 37.0 months, median PFS and OS were 25.2 and 39.2 months, respectively. The patients in the induction IC group exhibited a significant improvement in PFS and OS in comparison with those in the CCRT group (median PFS: not reached [NR] versus 15.9 months, hazard ratio [HR] 0.526 [95%CI 0.325-0.851], P = 0.0077; median OS: NR versus 25.2 months, HR 0.412 [95%CI 0.236-0.719], P = 0.0012). After PSM (50 pairs), both PFS and OS remained superior in the induction IC group compared to the CCRT group (HR 0.490 [95%CI 0.280-0.858], P = 0.011; HR 0.454 [95%CI 0.246-0.837], P = 0.0093), with 2-year PFS rates of 67.6 and 42.0%, and the 2-year OS rates of 74.6 and 52.0%, respectively. Multivariate analysis revealed that lower tumor stage, concurrent chemotherapy using double agents, and induction immunotherapy plus chemotherapy before CCRT were associated with better prognosis. CONCLUSIONS: Our results showed for the first time that induction immunotherapy plus chemotherapy followed by CCRT for unresectable locally advanced ESCC provided a survival benefit with manageable safety profile. More prospective clinical studies should be warranted.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Retrospective Studies , Prospective Studies , Propensity Score , Chemoradiotherapy/methods , Immunotherapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 225-230, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387926

ABSTRACT

OBJECTIVE: To study the serological characteristics of ABO*A2.08 subtype and explore its genetic molecular mechanism. METHODS: ABO blood group identification was performed on proband and her family members by routine serological methods. ABO genotyping and sequence analysis were performed by polymerase chain reaction-sequence specific primer (PCR-SSP), and direct sequencing of PCR products from exons 6 and 7 of ABO gene were directly sequenced and analyzed. The effect of gene mutation in A2.08 subtype on structural stability of GTA protein was investigated by homologous protein conserved analysis, 3D molecular modeling and protein stability prediction. RESULTS: The proband's serological test results showed subtype Ax, and ABO genotyping confirmed that the proband's genotype was ABO*A207/08. Gene sequencing of the proband's father confirmed the characteristic variation of c.539G>C in the 7th exon of ABO gene, leading to the replacement of polypeptide chain p.Arg180Pro (R180P). 3D protein molecular modeling and analysis suggested that the number of hydrogen bonds of local amino acids in the protein structure was changed after the mutation, and protein stability prediction showed that the mutation had a great influence on the protein structure stability. CONCLUSION: The mutation of the 7th exon c.539G>C of ABO gene leads to the substitution of polypeptide chain amino acid, which affects the structural stability of GTA protein and leads to the change of enzyme activity, resulting in the A2.08 phenotype. The mutated gene can be stably inherited.


Subject(s)
Peptides , Humans , Infant, Newborn , Female , Alleles , Base Sequence , Genotype , Phenotype
11.
J Intensive Care Med ; : 8850666231222220, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173252

ABSTRACT

The high respiratory and cardiac drive is essential to the host-organ unregulated response. When a primary disease and an unregulated secondary response are uncontrolled, the patient may present in a high respiratory and cardiac drive state. High respiratory drive can cause damage to the lungs, pulmonary circulation, and diaphragm, while high cardiac drive can lead to fluid leakage and infiltration as well as pulmonary interstitial edema. A "respiratory and cardiac dual high drive" state may be a sign of an unregulated response and can lead to secondary lung injury through the increase of transvascular pressure and pulmonary microcirculation injury. Ultrasound examination of the lung, heart, and diaphragm is important when evaluating the phenotype of high respiratory drive in critically ill patients. Ultrasound assessment can guide sedation, analgesia, and antistress treatment and reduce the risk of high respiratory and cardiac drive-induced lung injury in these patients.

12.
Plants (Basel) ; 13(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276775

ABSTRACT

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB.

14.
Respir Res ; 24(1): 318, 2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38105232

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) with unknown etiology, characterized by sustained damage repair of epithelial cells and abnormal activation of fibroblasts, the underlying mechanism of the disease remains elusive. METHODS: To evaluate the role of Tuftelin1 (TUFT1) in IPF and elucidate its molecular mechanism. We investigated the level of TUFT1 in the IPF and bleomycin-induced mouse models and explored the influence of TUFT1 deficiency on pulmonary fibrosis. Additionally, we explored the effect of TUFT1 on the cytoskeleton and illustrated the relationship between stress fiber and pulmonary fibrosis. RESULTS: Our results demonstrated a significant upregulation of TUFT1 in IPF and the bleomycin (BLM)-induced fibrosis model. Disruption of TUFT1 exerted inhibitory effects on pulmonary fibrosis in both in vivo and in vitro. TUFT1 facilitated the assembly of microfilaments in A549 and MRC-5 cells, with a pronounced association between TUFT1 and Neuronal Wiskott-Aldrich syndrome protein (N-WASP) observed during microfilament formation. TUFT1 can promote the phosphorylation of tyrosine residue 256 (Y256) of the N-WASP (pY256N-WASP). Furthermore, TUFT1 promoted transforming growth factor-ß1 (TGF-ß1) induced fibroblast activation by increasing nuclear translocation of pY256N-WASP in fibroblasts, while wiskostatin (Wis), an N-WASP inhibitor, suppressed these processes. CONCLUSIONS: Our findings suggested that TUFT1 plays a critical role in pulmonary fibrosis via its influence on stress fiber, and blockade of TUFT1 effectively reduces pro-fibrotic phenotypes. Pharmacological targeting of the TUFT1-N-WASP axis may represent a promising therapeutic approach for pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Animals , Mice , Bleomycin/toxicity , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung Diseases, Interstitial/metabolism , Mice, Inbred C57BL , Stress Fibers/metabolism , Transforming Growth Factor beta1/pharmacology
15.
Int Immunopharmacol ; 125(Pt B): 111206, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956491

ABSTRACT

Liver fibrosis is a major global health issue, and immune dysregulation is a main contributor. Triptolide is a natural immunosuppressive agent with demonstrated effectiveness in ameliorating liver fibrosis, but whether it exerts anti-liver fibrotic effects via immunoregulation remains obscure. In this study, first, by employing a CCL4-induced liver fibrosis mouse model, we demonstrated that triptolide could alleviate pathological damage to liver tissue and attenuate liver function damaged by CCL4. In addition, triptolide inhibited the expression of liver fibrotic markers such as hydroxyproline, collagen type IV, hyaluronidase, laminin, and procollagen type III, and the protein expression of α-SMA in CCL4-induced liver fibrosis. Second, with the help of network pharmacology, we predicted that triptolide's anti-liver fibrotic effects might occur through the regulation of Th17, Th1, and Th2 cell differentiation, which indicated that triptolide might mitigate liver fibrosis via immunoregulation. Finally, multiplex immunoassays and flow cytometry were adopted to verify this prediction. The results suggested that triptolide could reverse the aberrant expression of inflammatory cytokines caused by CCL4 and regulate the differentiation of Th1, Th2, Th17, and Treg cells. In conclusion, triptolide could attenuate CCL4-induced liver fibrosis by regulating the differentiation of CD4+ T cells. The results obtained in this study extended the application of triptolide and introduced a new mechanism of triptolide's anti-liver fibrotic effects.


Subject(s)
Liver Cirrhosis , Liver , Mice , Animals , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/pathology , T-Lymphocytes, Regulatory , Cell Differentiation , Carbon Tetrachloride/adverse effects
16.
Nat Commun ; 14(1): 7654, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996405

ABSTRACT

Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.


Subject(s)
Guanosine Monophosphate , Ralstonia solanacearum , Humans , Virulence , Ralstonia solanacearum/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Second Messenger Systems , Gene Expression Regulation, Bacterial , Biofilms
17.
Microb Biotechnol ; 16(11): 2145-2160, 2023 11.
Article in English | MEDLINE | ID: mdl-37815509

ABSTRACT

Virulence factor modulating (VFM) is a quorum sensing (QS) signal shared by and specific to Dickeya bacteria, regulating the production of plant cell wall degrading enzymes (PCWDEs) and virulence of Dickeya. High polarity and trace of VFM signal increase the difficulty of signal separation and structure identification, and thus limit the development of quorum quenching strategy to biocontrol bacterial soft rot diseases caused by Dickeya. In order to high-throughput screen VFM quenching bacteria, a vfmE-gfp biosensor VR2 (VFM Reporter) sensitive to VFM signal was first constructed. Subsequently, two bacterial strains with high quenching efficiency were screened out by fluorescence intensity measurement and identified as Pseudomonas chlororaphis L5 and Enterobacter asburiae L95 using multilocus sequence analysis (MLSA). L5 and L95 supernatants reduced the expression of vfm genes, and both strains also decreased the production of PCWDEs of D. zeae MS2 and significantly reduced the virulence of D. oryzae EC1 on rice seedlings, D. zeae MS2 on banana seedlings, D. dadantii 3937 on potato and D. fangzhongdai CL3 on taro. Findings in this study provide a method to high-throughput screen VFM quenching bacteria and characterize novel functions of P. chlororaphis and E. asburiae in biocontrolling plant diseases through quenching VFM QS signal.


Subject(s)
Pseudomonas chlororaphis , Virulence Factors , Virulence Factors/genetics , Dickeya/metabolism , Quorum Sensing , Pseudomonas chlororaphis/metabolism , Enterobacteriaceae , Plant Diseases/prevention & control , Plant Diseases/microbiology
18.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834168

ABSTRACT

Ophiocordyceps gracilis (O. gracilis) is a parasitic fungus used in traditional Chinese medicine and functional foods. In this study, a neutral heteropolysaccharide (GSP-1a) was isolated from spores of O. gracilis, and its structure and antioxidant capacities were investigated. GSP-1a was found to have a molecular weight of 72.8 kDa and primarily consisted of mannose (42.28%), galactose (35.7%), and glucose (22.02%). The backbone of GSP-1a was composed of various sugar residues, including →6)-α-D-Manp-(1→, →2,6)-α-D-Manp-(1→, →2,4,6)-α-D-Manp-(1→, →6)-α-D-Glcp-(1→, and →3,6)-α-D-Glcp-(1→, with some branches consisting of →6)-α-D-Manp-(1→ and α-D-Gal-(1→. In vitro, antioxidant activity assays demonstrated that GSP-1a exhibited scavenging effects on hydroxyl radical (•OH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). Moreover, GSP-1a was found to alleviate H2O2-induced oxidative stress in HepG2 cells by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD). Furthermore, GSP-1a upregulated the mRNA expression of antioxidant enzymes such as Ho-1, Gclm, and Nqo1, and regulated the NRF2/KEAP1 and FNIP1/FEM1B pathways. The findings elucidated the structural types of GSP-1a and provided a reliable theoretical basis for its usage as a natural antioxidant in functional foods or medicine.


Subject(s)
Antioxidants , Hypocreales , NF-E2-Related Factor 2 , Oxidative Stress , Antioxidants/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Polysaccharides/chemistry , Spores/metabolism
19.
World J Surg Oncol ; 21(1): 342, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884941

ABSTRACT

INTRODUCTION: Primary breast lymphoma (PBL) is rare, and most cases occur in female patients, with few reported cases in male patients. The clinical presentation is similar to that of breast cancer, but the condition needs to be well understood, as treatment options and clinical course vary. Hence, we provide a relatively rare case of primary breast diffuse large B cell lymphoma (PB-DLBCL) in a male, including its complete clinicopathological features, radiological findings, genomic mutational profiles, and clinical course. CASE PRESENTATION: A 45-year-old male presented with a lump in his right breast for 1 week and was pathologically diagnosed with breast malignancy after a breast puncture biopsy at the local hospital. He came to our hospital for further treatment and underwent breast ultrasound and systemic positron emission tomography/computed tomography (PET/CT) imaging, followed by right mastectomy and sentinel lymph node biopsy. Histomorphology showed diffuse hyperplasia of tumor cells with clear boundaries and surrounding normal breast ducts. The adhesion of tumor cells was poor with obvious atypia. Immunohistochemical results showed that the tumor cells were positive for CD20, Bcl6, and MUM-1 but negative for CK (AE1/AE3), ER, PR, CD3, and CD10. Forty percent of the tumor cells were positive for c-Myc, and 80% of tumor cells were positive for Bcl2. The Ki-67 proliferation index was up to 80%. The tumor cells were negative for MYC and BCL2 rearrangements but positive for BCL6 rearrangement by fluorescent in situ hybridization. No abnormality was found in the pathological examination of bone marrow aspiration. Therefore, the male was diagnosed with PB-DLBCL, nongerminal center (non-GCB) phenotype, dual-expression type. The sample were sequenced by a target panel of 121 genes related to lymphoma. Next-generation sequencing revealed six tumor-specific mutated genes (IGH/BCL6, TNFAIP3, PRDM1, CREBBP, DTX1, and FOXO1). The patient was given six cycles of orelabrutinib plus R-CHOP chemotherapy and two cycles of intrathecal injection of cytarabine. The last follow-up was on April 13, 2023 (17 months). No recurrence or metastasis was found in laboratory and imaging examinations. CONCLUSION: We reported a relatively rare PB-DLBCL in a male, non-GBC phenotype, dual-expression type. It is worth mentioning that this case had IgH/BCL6 fusion, nonsense mutations in TNFAIP3, frameshift mutations in PRDM1, and missense mutations in CREBBP, DTX1, and FOXO1. To the best of our knowledge, this case is the first report of genomic mutational profiles of PB-DLBCL in males.


Subject(s)
Breast Neoplasms , Lymphoma, Large B-Cell, Diffuse , Humans , Male , Middle Aged , Disease Progression , In Situ Hybridization, Fluorescence , Lymphoma, Large B-Cell, Diffuse/drug therapy , Mastectomy , Positron Emission Tomography Computed Tomography , Proto-Oncogene Proteins c-bcl-2/genetics
20.
J Clin Med ; 12(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37892591

ABSTRACT

Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...