Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Mar Environ Res ; 193: 106218, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039737

ABSTRACT

The co-occurrence of elevated seawater temperature and local stressors (heavy metal contamination) affects the ecophysiology of phototrophic species, and represents a risk to the environmental quality of coral reefs. Therefore, we investigated the effects of both Cu alone and Cu in combination with elevated temperature (ET) on the physiology of the coral Galaxea fascicularis, and measured the parameters related to the photo-physiology and oxidative state. G.fascicularis is one of the dominant coral species in the South China Sea which exhibits strong adaptability to environmental stress. We exposed the common coral species G.fascicularis to a series of environmentally relevant concentrations of Cu at 29 °C (normal temperature, NT) and 32 °C (elevated temperature, ET) for 96 h. Single polyps were used in the experiments, which reduced individual variability when compared to the coral colonies. The results suggested that: i) Cu or ET had significant negative effects on the actual operating ability of photosystem Ⅱ (PSII), but not on the maximal chlorophyll fluorescence in darkness (Fv/Fm). ii) Symbiodiniaceae density was significantly reduced by high Cu concentrations, for Cu-NT and Cu-ET, a high concentration of Cu (40 µg/L) significantly impacted Symbiodiniaceae density, causing a 75.4% and 81.0% decrease, respectively. iii) the content of malondialdehyde (MDA) in coral tissues increased significantly under Cu-ET. iv) a certain range of copper concentration (25-30 µg/L) increased the pigment content of the Symbiodiniacea. Our results indicated that the combined stressors of Cu and ET made the coral tissue sloughed, caused the coral tissue damaged by lipid oxidation, reduced the photosynthetic capacity of the Symbiodiniacea, and led to the excretion of Symbiodiniacea.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Copper/toxicity , Temperature , Coral Reefs
2.
Front Physiol ; 9: 1952, 2018.
Article in English | MEDLINE | ID: mdl-30692940

ABSTRACT

Diurnal pCO2 fluctuations have the potential to modulate the biological impact of ocean acidification (OA) on reef calcifiers, yet little is known about the physiological and biochemical responses of scleractinian corals to fluctuating carbonate chemistry under OA. Here, we exposed newly settled Pocillopora damicornis for 7 days to ambient pCO2, steady and elevated pCO2 (stable OA) and diurnally fluctuating pCO2 under future OA scenario (fluctuating OA). We measured the photo-physiology, growth (lateral growth, budding and calcification), oxidative stress and activities of carbonic anhydrase (CA), Ca-ATPase and Mg-ATPase. Results showed that while OA enhanced the photochemical performance of in hospite symbionts, it also increased catalase activity and lipid peroxidation. Furthermore, both OA treatments altered the activities of host and symbiont CA, suggesting functional changes in the uptake of dissolved inorganic carbon (DIC) for photosynthesis and calcification. Most importantly, only the fluctuating OA treatment resulted in a slight drop in calcification with concurrent up-regulation of Ca-ATPase and Mg-ATPase, implying increased energy expenditure on calcification. Consequently, asexual budding rates decreased by 50% under fluctuating OA. These results suggest that diel pCO2 oscillations could modify the physiological responses and potentially alter the energy budget of coral recruits under future OA, and that fluctuating OA is more energetically expensive for the maintenance of coral recruits than stable OA.

SELECTION OF CITATIONS
SEARCH DETAIL
...