Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 985-996, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884233

ABSTRACT

The southwestern region of China is the largest exposed karst area in the world and serves as an important ecological security barrier for the upstream of Yangtze River and Pearl River. Different from the critical zone of non-karst areas, the epikarst, formed by an interwoven network of denudation pores, is the core area of karst critical zone. Water is the most active component that participates in internal material cycle and energy flow within the critical zone. We reviewed relevant research conducted in the southwestern region from three aspects: the characte-rization of critical zone structure, the hydrological processes of soil-epikarst system, and their model simulations. We further proposed potential research hotpots. The main approach involved multi-scale and multi-method integrated observations, as well as interdisciplinary collaboration. Precisely characterizing the eco-hydrological processes of the vegetation-soil-epikarst coupling system was a new trend in the future research. This review would provide scientific reference for further studies on hydrological processes in critical zones and regional hydrological water resource management in karst areas.


Subject(s)
Ecosystem , Hydrology , China , Soil/chemistry , Water Movements , Rivers , Groundwater , Conservation of Water Resources/methods , Environmental Monitoring
2.
Sci Total Environ ; 912: 168929, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38042184

ABSTRACT

Vegetation restoration is an eco-friendly strategy for countering land degradation and biodiversity loss. Since 2000-2001, large-scale restoration projects have been performed in Southwest China, with the net primary productivity (NPP) increasing over the past two decades. However, negative ecohydrological impacts, including streamflow decline and soil moisture deficit, have been reported following afforestation. Current understanding of the permissible NPP capacity (NPPcap) and NPP potential (NPPpot) under karst and non-karst areas or planted and natural vegetations constrained by environmental factors remains unclear. Here multiple environmental drivers characterizing the heterogeneous landscape in the Xijiang River Basin (Southwest China) were employed to predict the NPPcap using a random forest model. Results showed that 85% of the area exhibited an increasing trend in NPPcap during 2001-2018. Overall, 3.50% of the area has exceeded the NPPcap, implying an excessive plantation and potential water deficit in these areas. Excluding agriculture activities, urban areas, and water bodies, we found there is room for an average extra 22.85% of NPP enhancement. The NPPpot was spatially imbalanced, with high NPPpot located in the northeast, indicating these areas as a target area for future vegetation restoration. Moreover, the NPPpot reduction in karst areas (1.12 g C m-2 a-1) was more pronounced than in non-karst areas (0.26 g C m-2 a-1), highlighting a stronger negative impact on NPPpot in karst areas. Furthermore, significant NPPpot differences were found between planted vegetation and natural vegetation for both karst and non-karst areas. According to the findings, we identified four separate restoration sub-zones and proposed tailored strategies to guide the implementation of future restoration efforts. Our study highlights restoration potential and where land is available for reforestation but also the urgent need for future restoration activities towards ecosystem sustainability.


Subject(s)
Ecosystem , Rivers , Biodiversity , Plants , China , Water
3.
J Environ Manage ; 336: 117656, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36898236

ABSTRACT

Temperature is an important near-surface microclimate parameter that plays a key role in hydrological, ecological, and biogeochemical functions. However, the spatio-temporal distribution of temperature on the invisible and inaccessible soil-weathered bedrock continuum, wherein hydrothermal processes are most active, remains poorly understood. Temperature dynamics were monitored at 5 min intervals in the air-soil-epikarst (∼3 m) system at different topographical positions of the karst peak-cluster depression in southwest China. The weathering intensity was characterized based on the physicochemical properties of samples collected through drilling. No significant difference was observed in air temperature across slope positions, which was related to the limited distance and elevation resulting in roughly consistent energy input. The control effect of air temperature on the soil-epikarst was weakened with the decrease in elevation (±0.36 to ±0.25 °C). It is attributed to the enhanced temperature regulation capacity of vegetation cover from the up slope (shrub dominant) to down slope (tree dominant) in a relatively uniform energy environment. Temperature stability is clearly distinguished in two adjacent hillslopes that were differentiated by weathering intensity. For every 1 °C change in the ambient temperature, the amplitude of soil-epikasrt temperature variation on the strongly and weakly weathered hillslopes were ±0.28 and ± 0.32 °C, respectively. The response of soil-epikarst temperature to ambient temperature was more sensitive in the wet season (±0.40 °C) than in the dry season (±0.20 °C), which was related to the cooling effect caused by abundant rainfall. The cooling effect was particularly prominent in the preferential flow development area composed of pipeline cracks, which appear in the hillslope with relatively weak weathering intensity. These demonstrate that soil-epikarst temperature responds more gently to the variability of rainfall and ambient temperature on a relatively strong weathered hillslope. Accordingly, this study highlights that the sensitivity of soil-epikarst temperature to climate change is regulated by vegetation and weathering intensity on karst hillslopes in southwest China.


Subject(s)
Microclimate , Soil , China , Ecosystem , Soil/chemistry , Temperature , Weather
4.
Ying Yong Sheng Tai Xue Bao ; 32(6): 2107-2118, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34212617

ABSTRACT

Epikarst is the core area of karst critical zone, with important hydrologic regulation and storage function. However, the effects of karst development degree on hydrologic characteristics of epikasrt is still unclear. We used geophysical exploration and hydrogeological techniques, combined with the dynamic monitoring of moisture and water levels, to quantify the karst development degrees and their hydrologic characteristics on slope lands. We analyzed the responses of soil-epikarst systems to rainfall. Results showed that geophysical exploration technology could be well applied to the detection of surface-subsurface structures in the karst areas. The average thickness of soil and surface karst zone on the slope was less than 0.63 m and 2.60 m, respectively. The slopes of strong-karstification characterized by high apparent resistivity, well-developed joint fractures, and strong permeability (0.73 m·d-1). Such a result indicated that epikarst could regulate precipitation. The responses of soil moisture had a larger rainfall threshold (>20.50 mm·d-1) and the water level was determined by rainfall amount. In contrast, the slope with weak-karstification had low apparent resistivity and weak permeability (0.07 m·d-1). Moisture and water level were sensitive to rainfall. Karst channels were developed locally at 240-300 cm with a permeability coefficient of up to 432 mm·d-1. Obvious preferential flow was observed in extreme rainfall events on this slope, which could induce flood disaster in the adjacent depression. Our results would provide scientific basis for further research on water resources regulation, management, and eco-hydrology in karst areas of southwest China.


Subject(s)
Hydrology , Soil , Calcium Carbonate , China , Environmental Monitoring , Magnesium
5.
Sci Total Environ ; 748: 142483, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33113671

ABSTRACT

Various water transmitting media are related to highly variable water source compositions, which limit the understanding of the aquifer structure and hydrological processes in a karst catchment. This study aims to understand the variation in water contribution by matrix, fissure, and conduit flows during storm and seasonal scales based on discharge, electrical conductivity (EC), and nitrate measurements of stream water in a typical dolomite catchment during 2017-2018 and discusses the hydrological response mechanism of a karst aquifer to rainfall characteristics. Time-series analyses of discharge and EC indicated that the rapid response time (mean lag time < 1 h) was mainly controlled by rainfall intensity, and the lag time decreased significantly when the rainfall intensity was lower than 15 mm/h. However, the mean discharge was dominated by the rainfall amount and antecedent moisture state. Hydrograph separation based on nitrate indicates that the contribution of soil water was irrelevant for recharging the stream during a non-rain period, whereas epikarst water contributed more than 83.2% of the total flow during a rainfall event. As indicated by the EC frequency distribution analyses, the contribution ratios of the surface, conduit, fissure, and matrix flows were 1:1.8:2.1:7.1, 1:1.6:5.3:6.3, and 0:0:0:1 during stormy, heavy, and light rainfall events, respectively. These parameters indicate that the degree of karstification was low in the karst aquifer. Seasonal frequency distribution analyses of EC indicate that higher rainfall amounts and rainfall intensities during the wet season promoted the contribution of conduit flow to approximately 11.4% of the total flow; however, matrix flow dominated the recharge of the streamflow and its contribution was more than 55.6% during each season. Our results suggest that the permeability of the epikarst matrix dominates the storage and transfer functions in dolomite karst aquifers with low karstification.

SELECTION OF CITATIONS
SEARCH DETAIL
...