Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Thromb J ; 21(1): 108, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864173

ABSTRACT

BACKGROUND: Hemophilia A (HEMA) is an X-linked bleeding disorder caused by reduced/absent coagulation factor VIII expression, as a result of pathogenic variants in the F8 gene. Preimplantation prevention of HEMA should ideally include direct pathogenic F8 variant detection, complemented by linkage analysis of flanking markers to identify the high-risk F8 allele. Linkage analysis is particularly indispensable when the pathogenic variant cannot be detected directly or identified. This study evaluated the suitability of a panel of F8 intragenic and extragenic short tandem repeat markers for standalone linkage-based preimplantation genetic testing for monogenic disorder (PGT-M) of the Inv22 pathogenic variant, an almost 600 kb paracentric inversion responsible for almost half of all severe HEMA globally, for which direct detection is challenging. METHODS: Thirteen markers spanning 1 Mb and encompassing both F8 and the Inv22 inversion interval were genotyped in 153 unrelated females of Viet Kinh ethnicity. RESULTS: All individuals were heterozygous for ≥ 1 marker, ~ 90% were heterozygous for ≥ 1 of the five F8 intragenic markers, and almost 98% were heterozygous for ≥ 1 upstream (telomeric) and ≥ 1 downstream (centromeric) markers. A prospective PGT-M couple at risk of transmitting F8 Inv22 were fully informative at four marker loci (2 intra-inversion, 1 centromeric, 1 telomeric) and partially informative at another five (2 intra-inversion, 3 centromeric), allowing robust phasing of low- and high-risk haplotypes. In vitro fertilization produced three embryos, all of which clearly inherited the low-risk maternal allele, enabling reliable unaffected diagnoses. A single embryo transfer produced a clinical pregnancy, which was confirmed as unaffected by amniocentesis and long-range PCR, and a healthy baby girl was delivered at term. CONCLUSION: Robust and reliable PGT-M of HEMA, including the common F8 Inv22 pathogenic variant, can be achieved with sufficient informative intragenic and flanking markers.

2.
Bio Protoc ; 13(12): e4704, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37397792

ABSTRACT

There are more than 40 types of spinocerebellar ataxia (SCA), most of which are caused by abnormal expansion of short tandem repeats at various gene loci. These phenotypically similar disorders require molecular testing at multiple loci by fluorescent PCR and capillary electrophoresis to identify the causative repeat expansion. We describe a simple strategy to screen for the more common SCA1, SCA2, and SCA3 by rapidly detecting the abnormal CAG repeat expansion at the ATXN1, ATXN2, and ATXN3 loci using melting curve analysis of triplet-primed PCR products. Each of the three separate assays employs a plasmid DNA carrying a known repeat size to generate a threshold melt peak temperature, which effectively distinguishes expansion-positive samples from those without a repeat expansion. Samples that are screened positive based on their melt peak profiles are subjected to capillary electrophoresis for repeat sizing and genotype confirmation. These screening assays are robust and provide accurate detection of the repeat expansion while eliminating the need for fluorescent PCR and capillary electrophoresis for every sample.

3.
Curr Protoc ; 2(5): e427, 2022 May.
Article in English | MEDLINE | ID: mdl-35609145

ABSTRACT

Fragile X syndrome and other fragile X-associated disorders are caused by the full-mutation (>200 copies) and premutation (55 to 200 copies) expansion, respectively, of the CGG short tandem repeat in the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Clinical diagnostic laboratories use Southern blot analysis and polymerase chain reaction (PCR)-based tests to detect and/or size the FMR1 CGG repeats. The development of sensitive and high-throughput triplet-primed PCR (TP-PCR) assays has diminished the need to subject all samples to Southern blot analysis, which is both labor- and time-intensive. In this article, we describe two direct TP-PCR (dTP-PCR) assays for the detection of FMR1 CGG repeat expansions. We outline a protocol that is based on melting curve analysis of dTP-PCR amplicons for a rapid and cost-effective first-tier screening and identification of individuals with premutation and full-mutation expansions. We also describe a protocol that employs capillary electrophoresis to resolve the dTP-PCR amplicon fragments and to estimate the repeat sizes of normal (5 to 44 copies), intermediate (45 to 54 copies), and premutation alleles, as well as to detect full mutations and determine the structure of the FMR1 alleles. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Direct triplet-primed PCR master mix preparation and amplification of the FMR1 CGG repeat locus for melting curve analysis Basic Protocol 2: Melting curve analysis of direct triplet-primed PCR amplicons on the Rotor-Gene Q MD × 5plex high-resolution melt platform Alternate Protocol: Melting curve analysis of direct triplet-primed PCR amplicons on the LightCycler 480 system Basic Protocol 3: Generation of direct triplet-primed PCR melting curve analysis profiles Basic Protocol 4: Direct triplet-primed PCR master mix preparation and amplification of the FMR1 CGG repeat locus for capillary electrophoresis Basic Protocol 5: Generation of control FMR1 plasmids for direct triplet-primed PCR melting curve analysis Basic Protocol 6: Sanger sequencing assay to verify FMR1 CGG repeat size and structure of plasmid DNA controls.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Genotype , Humans , Polymerase Chain Reaction/methods , Ribonucleoproteins
4.
Clin Chem ; 68(6): 794-802, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35262663

ABSTRACT

BACKGROUND: The autosomal dominantly inherited and genetically heterogeneous spinocerebellar ataxias (SCAs) exhibit highly similar clinical presentations. Many are caused by repeat expansions, of which at least 8 involve CAG repeats. Repeat expansion detection is the only method to confirm disease status in symptomatic individuals. We present a novel strategy to simultaneously screen for the presence of CAG repeat expansion in the genes responsible for SCAs 1, 2, 3, 6, 7, 12, and dentatorubral-pallidoluysian atrophy using a simplified single-tube assay. METHODS: The method employs differentially labeled locus-specific primers and a common triplet-primed primer. Amplified products from each locus are distinguished by a combination of the product size and the fluorophore tag. The upper size limit of the normal allele range was used as the cutoff for distinguishing normal from potentially affected samples, with repeat expansion detected by presence of electrophoretic peaks extending beyond the cutoff. RESULTS: Blinded evaluation of the assay on 60 genotype-known DNA samples correctly detected repeat expansion in the expected SCA repeat locus for all 31 DNA samples. CONCLUSIONS: In principle, this strategy can be applied to the simultaneous screening of any group of disease genes sharing the same repetitive units and/or their reverse complement.


Subject(s)
Spinocerebellar Ataxias , Alleles , DNA , Humans , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics
5.
J Mol Diagn ; 23(5): 565-576, 2021 05.
Article in English | MEDLINE | ID: mdl-33618058

ABSTRACT

The autosomal dominantly inherited spinocerebellar ataxias (SCAs) can be caused by dynamic mutations of short tandem repeats within various genes. Because of the significant clinical overlap among the various SCA types, molecular screening of multiple genetic loci by fluorescent PCR and capillary electrophoresis is necessary to identify the causative repeat expansion. We describe a simple, rapid, and inexpensive strategy to screen for CAG repeat expansion mutations at the ATXN1, ATXN2, and ATXN3 loci using melting curve analysis of triplet-primed PCR products. Plasmid DNAs of known repeat sizes were used to generate threshold melt peak temperatures, which rapidly and effectively distinguish samples carrying an expanded allele from those carrying nonexpanded alleles. Melting curve analysis-positive samples were confirmed by capillary electrophoresis sizing of the triplet-primed PCR products. All three assays achieved 100% sensitivity, with 95% CIs of 67.86% to 100% (SCA1), 74.65% to 100% (SCA2), and 91.58% to 100% (SCA3). The SCA1 assay also achieved 100% specificity (95% CI, 97.52%-100%), whereas the SCA2 and SCA3 assays achieved specificity of 99.46% (95% CI, 96.56%-99.97%) and 99.32% (95% CI, 95.70%-99.96%), respectively. These screening assays provide robust and highly accurate detection of expanded alleles and are amenable to large-scale screening while minimizing the need for capillary electrophoresis sizing for every sample.


Subject(s)
Machado-Joseph Disease/diagnosis , Mutation , Polymerase Chain Reaction/methods , Spinocerebellar Ataxias/diagnosis , Trinucleotide Repeat Expansion , Ataxin-1/genetics , Ataxin-2/genetics , Ataxin-3/genetics , Gene Frequency , Humans , Machado-Joseph Disease/genetics , Repressor Proteins/genetics , Spinocerebellar Ataxias/genetics , Transition Temperature
6.
Sci Rep ; 9(1): 16481, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712634

ABSTRACT

Huntington disease (HD) is a lethal neurodegenerative disorder caused by expansion of a CAG repeat within the huntingtin (HTT) gene. Disease prevention can be facilitated by preimplantation genetic testing for this monogenic disorder (PGT-M). We developed a strategy for HD PGT-M, involving whole genome amplification (WGA) followed by combined triplet-primed PCR (TP-PCR) for HTT CAG repeat expansion detection and multi-microsatellite marker genotyping for disease haplotype phasing. The strategy was validated and tested pre-clinically in a simulated PGT-M case before clinical application in five cycles of a PGT-M case. The assay reliably and correctly diagnosed all embryos, even where allele dropout (ADO) occurred at the HTT CAG repeat locus or at one or more linked markers. Ten of the 27 embryos analyzed were diagnosed as unaffected. Four embryo transfers were performed, two of which involved fresh cycle double embryo transfers and two were frozen-thawed single embryo transfers. Pregnancies were achieved from each of the frozen-thawed single embryo transfers and confirmed to be unaffected by amniocentesis, culminating in live births at term. This strategy enhances diagnostic confidence for PGT-M of HD and can also be employed in situations where disease haplotype phase cannot be established prior to the start of PGT-M.


Subject(s)
Genetic Testing , Huntingtin Protein/genetics , Huntington Disease/diagnosis , Huntington Disease/genetics , Multilocus Sequence Typing , Multiplex Polymerase Chain Reaction , Preimplantation Diagnosis , Trinucleotide Repeat Expansion , Alleles , Fertilization in Vitro , Genetic Testing/methods , Haplotypes , Humans , Microsatellite Repeats , Pedigree , Preimplantation Diagnosis/methods , Single-Cell Analysis/methods
7.
Front Genet ; 10: 1105, 2019.
Article in English | MEDLINE | ID: mdl-31781167

ABSTRACT

Preimplantation genetic testing for the monogenic disorder (PGT-M) spinal muscular atrophy (SMA) is significantly improved by supplementation of SMN1 deletion detection with marker-based linkage analysis. To expand the availability of informative markers for PGT-M of SMA, we identified novel non-duplicated and highly polymorphic microsatellite markers closely flanking the SMN1 and SMN2 duplicated region. Six of the novel markers within 0.5 Mb of the 1.7 Mb duplicated region containing SMN1 and SMN2 (SMA6863, SMA6873, SMA6877, SMA7093, SMA7115, and SMA7120) and seven established markers (D5S1417, D5S1413, D5S1370, D5S1408, D5S610, D5S1999, and D5S637), all with predicted high heterozygosity values, were selected and optimized in a tridecaplex PCR panel, and their polymorphism indices were determined in two populations. Observed marker heterozygosities in the Chinese and Caucasian populations ranged from 0.54 to 0.86, and 98.4% of genotyped individuals (185 of 188) were heterozygous for ≥2 markers on either side of SMN1. The marker panel was evaluated for disease haplotype phasing using single cells from two parent-child trios after whole-genome amplification, and applied to a clinical IVF (in vitro fertilization) PGT-M cycle in an at-risk couple, in parallel with SMN1 deletion detection. Both direct and indirect test methods determined that none of five tested embryos were at risk for SMA, with haplotype analysis further identifying one embryo as unaffected and four as carriers. Fresh transfer of the unaffected embryo did not lead to implantation, but subsequent frozen-thaw transfer of a carrier embryo produced a pregnancy, with fetal genotype confirmed by amniocentesis, and a live birth at term.

8.
Front Genet ; 10: 589, 2019.
Article in English | MEDLINE | ID: mdl-31316546

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by expansion of the DMPK CTG trinucleotide repeat. Disease transmission to offspring can be avoided through prenatal diagnosis or preimplantation genetic testing for monogenic disorders (PGT-M). We describe a robust strategy for DM1 PGT-M that can be applied to virtually any at-risk couple. This strategy utilizes whole-genome amplification, followed by triplet-primed PCR (TP-PCR) detection of expanded DMPK alleles, in parallel with single-tube haplotype analysis of 12 closely linked and highly polymorphic microsatellite markers. Bidirectional TP-PCR and dodecaplex marker PCR assays were optimized and validated on whole-genome amplified single lymphoblasts isolated from DM1 reference cell lines, and tested on a simulated PGT-M case comprising a parent-offspring trio and three simulated embryos. Bidirectional DMPK TP-PCR reliably detects repeat expansions even in the presence of non-CTG interruptions at either end of the expanded allele. Misdiagnoses, diagnostic ambiguity, and couple-specific assay customization are further minimized by the use of multi-marker haplotyping, preventing the loss of potentially unaffected embryos for transfer.

9.
Sci Rep ; 9(1): 8280, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164682

ABSTRACT

Myotonic dystrophy type 1 is a multisystem disorder caused by the expansion of a trinucleotide repeat in the DMPK gene. In this study we evaluated the performance of the FastDM1TM DMPK sizing kit in myotonic dystrophy type 1 testing. This commercially available triplet repeat-primed PCR based kit was validated using reference and clinical samples. Based on testing with 19 reference samples, the assay yielded repeat sizes within three repeats from the consensus reference length, demonstrating an accuracy of 100%. Additionally, the assay generated consistent repeat size information with a concentration range of template-DNA, and upon repetition and reproduction (CV 0.36% to 0.41%). Clinical performance was established with 235 archived prenatal and postnatal clinical samples, yielding results of 100% sensitivity (95% CI, 97.29% to 100%) and 100% specificity (95% CI, 96.19% to 100%) in classifying the samples into the respective genotype groups of 5-35 (normal), 36-50 (non-pathogenic pre-expansion), 51-150 (unstable intermediate-sized pathogenic) or >150 (unstable pathogenic) CTG repeats, respectively. Furthermore, the assay identified interrupted repeat expansions in all samples known to have interruptions, and also identified interruptions in a subset of the clinical samples.


Subject(s)
Myotonic Dystrophy/genetics , Myotonin-Protein Kinase/genetics , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeats/genetics , Genotype , Humans , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/pathology , Polymerase Chain Reaction
10.
Front Genet ; 9: 582, 2018.
Article in English | MEDLINE | ID: mdl-30538724

ABSTRACT

Background: FMR1 CGG trinucleotide repeat hyper-expansions are observed in 99% of individuals with fragile X mental retardation syndrome (FXS). We evaluated the reliability of a rapid single-step gender-neutral molecular screen for FXS when performed on DNA isolated from dried blood spots. Methods: DNA was extracted from dried blood spots of 151 individuals with intellectual disability or autism spectrum disorder, whose FMR1 repeat genotypes are known. Dried blood spots were blinded prior to DNA extraction and analysis by triplet primed PCR (TP-PCR) and melt curve analysis (MCA). All expansion-positive and representative expansion-negative samples were also genotyped by fluorescent TP-PCR and capillary electrophoresis (CE) to confirm repeat expansion status. Results: Three males and 12 females were classified as expanded by TP-PCR MCA, and were subsequently sized by fluorescent TP-PCR CE. Two males and four females carried premutations, while one male and eight females carried full mutations. All 19 non-expanded samples that were sized were confirmed as carrying only normal alleles. Replicate analysis of representative expansion-positive samples yielded reproducible melt peak profiles. TP-PCR MCA classifications were completely concordant with FMR1 CGG repeat genotypes. Conclusion: TP-PCR MCA of dried blood spot DNA accurately and reliably identifies presence/absence of FMR1 CGG repeat expansions in both genders simultaneously. This strategy may be suitable for rapid high-throughput first-tier screening for fragile X syndrome.

11.
Expert Rev Mol Med ; 19: e10, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28720156

ABSTRACT

Fragile X mental retardation 1 (FMR1) full-mutation expansion causes fragile X syndrome. Trans-generational fragile X syndrome transmission can be avoided by preimplantation genetic diagnosis (PGD). We describe a robust PGD strategy that can be applied to virtually any couple at risk of transmitting fragile X syndrome. This novel strategy utilises whole-genome amplification, followed by triplet-primed polymerase chain reaction (TP-PCR) for robust detection of expanded FMR1 alleles, in parallel with linked multi-marker haplotype analysis of 13 highly polymorphic microsatellite markers located within 1 Mb of the FMR1 CGG repeat, and the AMELX/Y dimorphism for gender identification. The assay was optimised and validated on single lymphoblasts isolated from fragile X reference cell lines, and applied to a simulated PGD case and a clinical in vitro fertilisation (IVF)-PGD case. In the simulated PGD case, definitive diagnosis of the expected results was achieved for all 'embryos'. In the clinical IVF-PGD case, delivery of a healthy baby girl was achieved after transfer of an expansion-negative blastocyst. FMR1 TP-PCR reliably detects presence of expansion mutations and obviates reliance on informative normal alleles for determining expansion status in female embryos. Together with multi-marker haplotyping and gender determination, misdiagnosis and diagnostic ambiguity due to allele dropout is minimised, and couple-specific assay customisation can be avoided.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Haplotypes , Mutation , Trinucleotide Repeats , Alleles , Female , Fertilization in Vitro , Genetic Testing , Humans , Male , Pedigree , Polymerase Chain Reaction/methods , Pregnancy , Preimplantation Diagnosis , Reproducibility of Results
12.
Clin Chem ; 63(6): 1127-1140, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28428361

ABSTRACT

BACKGROUND: Preimplantation genetic diagnosis (PGD) of myotonic dystrophy type 1 (DM1) currently uses conventional PCR to detect nonexpanded dystrophia myotonica protein kinase (DMPK) alleles or triplet-primed PCR to detect the CTG-expanded alleles, coupled with analysis of linked microsatellite markers to increase diagnostic accuracy. We aimed to simplify the process of identification and selection of informative linked markers for application to DM1 PGD. METHODS: An in silico search was performed to identify all markers within 1-1.5 Mb flanking the DMPK gene. Five previously known (D19S559, APOC2, D19S543, D19S112, and BV209569) and 7 novel (DM45050, DM45178, DM45209, DM45958, DM46513, DM46892, and DM47004.1) markers with potentially high heterozygosity values and polymorphism information content were selected and optimized in a single-tube multiplex PCR panel. RESULTS: Analysis of 184 DNA samples of Chinese and Caucasian individuals (91 from unrelated, anonymized cord blood of Chinese babies born at the National University Hospital, Singapore, and 93 Caucasian DNA samples from the Human Variation Panel HD100CAU) confirmed the high polymorphism indices of all markers (polymorphism information content >0.5), with observed heterozygosity values ranging from 0.62-0.93. All individuals were heterozygous for at least 6 markers, with 99.5% of individuals heterozygous for at least 2 markers on either side of the DMPK CTG repeat. The dodecaplex marker assay was successfully validated on 42 single cells and 12 whole genome amplified single cells. CONCLUSIONS: The DM1 multiplex PCR panel is suitable for use in DM1 PGD either as a standalone linkage-based assay or as a complement to DMPK CTG repeat expansion-mutation detection.


Subject(s)
DNA Repeat Expansion/genetics , Microsatellite Repeats/genetics , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/genetics , Myotonin-Protein Kinase/genetics , Polymerase Chain Reaction , Biomarkers , Cell Line , Humans , Polymorphism, Genetic/genetics
13.
Expert Rev Mol Diagn ; 16(11): 1221-1232, 2016 11.
Article in English | MEDLINE | ID: mdl-27665623

ABSTRACT

BACKGROUND: DMPK CTG-repeat expansions that cause myotonic dystrophy type 1 (DM1) can be detected more rapidly, cost-effectively, and simply by combining triplet-primed PCR (TP-PCR) with melting curve analysis (MCA). We undertook a detailed technical validation study to define the optimal operational parameters for performing bidirectional TP-PCR MCA assays. METHODS: We determined the assays' analytic specificity and sensitivity, assessed the effect of reaction volumes, DNA diluents, and common contaminants on melt peak temperature, determined the assays' sensitivity in detecting low-level mosaicism for repeat expansion, and evaluated their performance on two real-time PCR platforms. RESULTS: Both assays were highly specific and sensitive, and performed optimally under a broad range of parameters. Bidirectional TP-PCR MCA analysis also reduces the risk of generating false-negative results associated with the rare CCG-interruptions that may be present at either end of expanded alleles. CONCLUSION: The DMPK TP-PCR MCA is a highly specific, sensitive, and significantly cost-saving screening tool for DM1.


Subject(s)
Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/genetics , Real-Time Polymerase Chain Reaction/methods , Trinucleotide Repeat Expansion , Alleles , Cell Line , Humans , Mosaicism , Myotonin-Protein Kinase/genetics , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
14.
J Mol Diagn ; 18(5): 719-730, 2016 09.
Article in English | MEDLINE | ID: mdl-27375073

ABSTRACT

Population-based screening for CGG-repeat expansions in the fragile X mental retardation 1 (FMR1) gene that cause fragile X syndrome can now be performed more cost-effectively and simply by combining direct triplet-primed PCR (dTP-PCR) with melting curve analysis (MCA). We have now performed a detailed technical validation to define the operational parameters for achieving robust and reliable performance of the FMR1 dTP-PCR MCA assay. We compared the assay's performance on 2 real-time PCR platforms and determined its analytic sensitivity and specificity. We also assessed the assay's performance on DNA isolated from different sources, the effect of differences in CGG-repeat length and AGG-interruption pattern on melt peak temperature (Tm), and the effect of common substances found in DNA solutions on Tms. The assay performed well in distinguishing normal from expansion-carrying samples. The assay had detection sensitivity down to 1 ng and an analytical specificity beyond 150 ng. In addition to peripheral blood DNA, analysis could also be performed on DNA from saliva, buccal swabs, and dried blood spots. Salt increased Tms, glycogen contamination had minimal effect, whereas AGG interruptions lowered Tms. The FMR1 dTP-PCR MCA screening assay is highly sensitive and specific, performs well using DNA from different sources, and is robust and reproducible when reagent concentrations are maintained across all tested samples.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Multiplex Polymerase Chain Reaction/methods , Trinucleotide Repeat Expansion , Cell Line , Female , Genetic Testing/methods , Humans , Male , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Trinucleotide Repeats
15.
J Mol Diagn ; 17(2): 128-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25684273

ABSTRACT

Instability and expansion of the DMPK CTG repeat cause myotonic dystrophy type 1 (DM1), the most common adult-onset neuromuscular disorder. Overlapping clinical features between DM1 and other myotonic disorders necessitate molecular confirmation for definitive diagnosis. Preconception screening could improve reproductive planning especially in DM1-affected women, who show diminished ovarian reserve and unfavorable in vitro fertilization-preimplantation genetic diagnosis outcome. We optimized triplet-primed PCR and melting curve analysis on 17 DNAs from DM1-affected/unaffected cell lines. A blinded test was performed on 60 genotype-known clinical samples. Plasmid constructs pDMPK(CTG)35 and pDMPK(CTG)48 were used to establish threshold temperatures separating DM1-affected from unaffected samples. Postscreen triplet-primed PCR amplicon sizing was achieved by short-cycle labeled-primer extension followed by capillary electrophoresis. Triplet-primed PCR melting curve analysis melt peak temperatures of unaffected and DM1-affected samples were lower and higher than the control plasmids' melt peak temperatures, respectively. Capillary electrophoresis of post-melting curve analysis amplicons was completely concordant with the screening results. Triplet-primed PCR melting curve analysis is a simple and cost-effective screening tool for rapid identification of DM1. The companion confirmation protocol allows quick determination of CTG repeat size when required. This strategy avoids the need to perform capillary electrophoresis sizing on all test samples, limiting capillary electrophoresis analysis to only a subset of cases that are screen-positive.


Subject(s)
Myotonic Dystrophy/diagnosis , Polymerase Chain Reaction/methods , Cell Line , Electrophoresis, Capillary , Humans , Myotonic Dystrophy/genetics , Plasmids/genetics , Temperature
16.
Expert Rev Mol Diagn ; 15(3): 431-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25583300

ABSTRACT

AIM: Molecular diagnosis of fragile X syndrome demands assessment of fragile X mental retardation 1 (FMR1) CGG repeat size and methylation status, while predicting disease transmission risk requires determination of AGG interruption pattern. There is currently no single assay that provides all three categories of information. We describe a single-tube methylation-specific triplet-primed PCR assay for concurrently assessing methylation state, repeat size and structure of CGG repeat(s). METHODS: Differentially labeled primers specific for methylated and unmethylated FMR1 alleles were used to amplify bisulfite-modified DNA, followed by capillary electrophoresis. Twenty-four reference DNAs and 107 patient samples were analyzed to evaluate assay performance. RESULTS: Repeat size, AGG interruption pattern and methylation state were correctly identified in all tested samples. The assay also detected skewed X-inactivation when present in females, and somatic mosaicism in fragile X males. CONCLUSION: When used in a molecular diagnostic setting, this novel assay could significantly minimize the need to reflex patient samples for Southern analysis.


Subject(s)
DNA Methylation , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Polymerase Chain Reaction , Alleles , Cell Line , Female , Genotype , Humans , Male , Mosaicism , Polymerase Chain Reaction/methods , Reproducibility of Results , Trinucleotide Repeats , X Chromosome Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL
...