Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 284(47): 32950-8, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19776020

ABSTRACT

Foam cell formation is a hallmark event during atherosclerosis. The current paradigm is that lipid uptake by scavenger receptor in macrophages initiates the chronic proinflammatory cascade and necrosis core formation that characterize atherosclerosis. We report here that a cytokine considered to be anti-atherogenic, interleukin-10 (IL10), promotes cholesterol uptake from modified lipoproteins in macrophages and its transformation into foam cells by increasing the expression of scavenger receptor CD36 and scavenger receptor A. Although uptake of modified lipoproteins is considered proatherogenic, we found that IL10 also increases cholesterol efflux from macrophages to protect against toxicity of free cholesterol accumulation in the cell. This process was PPARgamma-dependent and was mediated through up-regulation of ABCA1 (ATP-binding cassette transporter A1) protein expression. Importantly, expression of inflammatory molecules, such as tumor necrosis factor-alpha, intercellular adhesion molecule-1, and MMP9 as well as apoptosis were dramatically suppressed in lipid-laden foam cells treated with IL10. The notion that IL10 can mediate both the uptake of cholesterol from modified lipoproteins and the efflux of stored cholesterol suggests that the process of foam cell formation is not necessarily detrimental as long as mechanisms of cholesterol efflux and transfer to an exogenous acceptor are functioning robustly. Our results present a comprehensive antiatherogenic role of IL10 in macrophages, including enhanced disposal of harmful lipoproteins, inhibition of inflammatory molecules, and reduced apoptosis.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , Interleukin-10/metabolism , Macrophages/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Animals , CD36 Antigens/metabolism , Caspase 3/metabolism , Cell Line , Cytokines/metabolism , Flow Cytometry , Lipids/chemistry , Lipoproteins/chemistry , Mice , Up-Regulation
2.
Am J Physiol Heart Circ Physiol ; 288(4): H1802-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15563531

ABSTRACT

This study compared the effects of rosuvastatin on left ventricular infarct size in mice after permanent coronary occlusion vs. 60 min of ischemia followed by 24 h of reperfusion. Statins can inhibit neutrophil adhesion, increase nitric oxide synthase (NOS) expression, and mobilize progenitor stem cells after ischemic injury. Mice received blinded and randomized administration of rosuvastatin (20 mg.kg(-1).day(-1)) or saline from 2 days before surgery until death. After 60 min of ischemia with reperfusion, infarct size was reduced by 18% (P = 0.03) in mice randomized to receive rosuvastatin (n = 18) vs. saline (n = 22) but was similar after permanent occlusion in rosuvastatin (n = 17) and saline (n = 20) groups (P = not significant). Myocardial infarct size after permanent left anterior descending coronary artery occlusion (n = 6) tended to be greater in NOS3-deficient mice than in the wild-type saline group (33 +/- 4 vs. 23 +/- 2%, P = 0.08). Infarct size in NOS3-deficient mice was not modified by treatment with rosuvastatin (34 +/- 5%, n = 6, P = not significant vs. NOS3-deficient saline group). After 60 min of ischemia-reperfusion, neutrophil infiltration was similar in rosuvastatin and saline groups as was the percentage of CD34(+), Sca-1(+), and c-Kit(+) cells. Left ventricular NOS3 mRNA and protein levels were unchanged by rosuvastatin. Rosuvastatin reduces infarct size after 60 min of ischemia-reperfusion but not after permanent coronary occlusion, suggesting a potential anti-inflammatory effect. Although we were unable to demonstrate that the myocardial protection was due to an effect on neutrophil infiltration, stem cell mobilization, or induction of NOS3, these data suggest that rosuvastatin may be particularly beneficial in myocardial protection after ischemia-reperfusion injury.


Subject(s)
Fluorobenzenes/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Coronary Disease/drug therapy , Coronary Disease/pathology , Heart Ventricles/pathology , Hematopoietic Stem Cell Mobilization , Ligation , Male , Mice , Mice, Inbred C57BL , Myocardium/pathology , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Nitric Oxide Synthase Type III , RNA, Messenger/analysis , Rosuvastatin Calcium , Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...