Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; : 133355, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38945711

ABSTRACT

In this work, the step-by-step dip-coating (SBS) method was used to effectively improve the drawback of LBL by reducing the construction of a multilayer polyelectrolyte. Bio-based flame retardants, phytic acid (PA), and chitosan (CS) were further self-assembly on the surface of cotton fabric treated by epichlorohydrin-modified aramid nanofibers (AEP), ionic liquid (IL), and Cu ion. The pure cotton fabric was immersed in each dipping liquid only once, improving fire safety and antibacterial performance. The treated cotton self-extinguished with a 59 mm char length in the vertical flammability test, and the limiting oxygen index (LOI) value increased from 18.5 % to 38.5 %. The result of the cone calorimeter test (CCT) revealed that the fire hazard of flame-retardant cotton noteworthy declined (e.g., ~44.1 % and 55.4 % decline in peak heat release rate (pHRR) and total heat release rate (THR)). Conspicuously, the treated cotton exhibited a remarkably inhibiting effect on E. coli and S. aureus activity. The cotton fabric after flame-retardant finishing exhibited excellent fire safety and antibacterial performance.

2.
J Hazard Mater ; 459: 132041, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37487334

ABSTRACT

Due to frequent petrochemical spills, environmental pollution and the threat of secondary marine fires have arisen, necessitating an urgent need for petrochemical spill treatment strategies with high-performance oil-water separation capabilities. To address the challenges of poor durability, instability in hydrophobic conditions, and difficulty in absorbing high-viscosity crude oil associated with hydrophobic absorbent materials, the authors of this study took inspiration from the unique micro and nanostructures of springtails' water-repellent skin. We engineered a superhydrophobic melamine sponge using interfacial assembly techniques designated as Si@PBA@PDA@MS. This material demonstrated improved mechanical and chemical durability, enhanced photothermal performance, and reduced fire risk. The metal-organic framework (MOF)-derived cobalt-iron Prussian blue analog (CoFe-PBA) was firmly anchored to the sponge framework by the chelation of cobalt ions using polydopamine (PDA). The results demonstrated that Si@PBA@PDA@MS demonstrated excellent superhydrophobicity (WCA=163.5°) and oil absorption capacity (53.4-97.5 g/g), maintaining high durability even after 20 cycles of absorption-squeezing. Additionally, it could still exhibit excellent mechanical properties, hydrophobic stability, and absorption performance across a wide temperature range (0-100 °C), pH range (1-14), and high compression strength (ε = 80%), with excellent mechanical/chemical durability. Furthermore, Si@PBA@PDA@MS demonstrated remarkable photothermal performance and low fire risk, offering efficient, safe, and sustainable practical value for effective petrochemical spill treatment.

3.
Macromol Rapid Commun ; 44(18): e2300262, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37335812

ABSTRACT

Simultaneously enhancing the fire safety and mechanical properties of epoxy resin (EP) remains a persistent challenge. Herein, a high-efficient phosphaphenanthrene-based flame retardant (FNP) is synthesized using 3,5-diamino-1,2,4-triazole, 4-formylbenzoic acid, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. Due to the presence of active amine groups, FNP is employed as a co-curing agent for fabricating EP composites with outstanding fire safety and mechanical properties. EP containing 8 wt% FNP (EP/8FNP) achieves a vertical burning (UL-94) V-0 rating with a limiting oxygen index of 31%. Meanwhile, FNP declines the peak heat release rate, total heat release, and total smoke release of EP/8FNP by 41.1%, 31.8%, and 16.0%, respectively, compared to those of unmodified EP. The increased fire safety of EP/FNP composites is because FNP promotes the formation of an intumescent, compact, and cross-linking char layer for EP/FNP composites, and releases P-containing substances and noncombustible gases in the gas phase during combustion. In addition, EP/8FNP exhibits 20.3% and 5.4% increase in the flexural strength and modulus compared with those of pure EP. Furthermore, FNP enhances the glass transition temperature of EP/FNP composites from 141.6 °C for pure EP to 147.3 °C for EP/8FNP. Therefore, this work is conducive to the future development of fabricating fire-safe EP composites with enhanced mechanical properties.


Subject(s)
Epoxy Resins , Flame Retardants , Gases , Glass , Hot Temperature
4.
Macromol Rapid Commun ; 44(12): e2300071, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37083036

ABSTRACT

Two kinds of polyaniline coupled graphitized carbon nitride nanosheets doped with different organic phosphoric acids (CP@PA, with phytic acid; CP@NP, with amino trimethyl phosphonic acid) are developed by in-situ polymerization. According to the analysis of the section morphology and element distribution of epoxy resin (EP) composites, although CP@PA and CP@NP show completely different morphology, they can significantly enhance the dispersion of graphitized carbon nitride nanosheets in EP. Moreover, the different oxidation states of phosphorus contained in the CP@PA and CP@NP lead to varying effects on the fire safety of EP. The flame retardancy Index (FRI) is a dimensionless index to evaluate the performance of flame retardants. When used as a flame retardant, CP@NP (FRI = 3.22) is better than CP@PA (FRI = 1.29) in flame retardant, especially in suppressing thermal hazards. As a synergist of intumescent flame retardants (IFR), CP@PA (FRI = 26.12) is most effective in improving the comprehensive fire safety property of EP and achieves an "Excellent" rating. Therefore, two different flame-retardant mechanisms of CP@PA and CP@NP are summarized by analyzing the combustion behavior and changes of condensed phase. In summary, this research may be helpful to the design of nano synergies for IFR systems.


Subject(s)
Flame Retardants , Epoxy Resins , Amino Acids , Aniline Compounds , Phosphoric Acids , Phosphorus
5.
Chemosphere ; 311(Pt 1): 137061, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36328322

ABSTRACT

Phosphorus-containing ionic liquid derivatives have been proven to be effective flame retardants for epoxy resin (EP). Flame retardants can accelerate the curing process and improve flame retardancy and smoke suppression of EP composites, which is challenging. In this paper, a novel phosphorus-containing ionic liquid (TPP-PF6) was synthesized and used both as a co-curing agent with 4,4'-diaminodiphenylmethane (DDM) and as a highly effective flame retardant for EP. It has been found that TPP-PF6 was conducive to improve the char formation of EP to inhibit the smoke release at high temperatures. For EP/TPP-PF6 composites, the flame-retardant performance was enhanced rapidly with the increase of TPP-PF6. With only 2 wt% of TPP-PF6, EP/2.0TPP-PF6 reached a UL-94 V-0 rating and a limiting oxygen index of 30.3%. The peak heat release rate, total heat release, and total smoke production values of EP/2.0TPP-PF6 were reduced by 36.32%, 45.81%, and 15.1% compared with those of pure EP, respectively. The thermal degradation products and flame retardant mechanism in gas and condensed phases were studied. It was found that TPP-PF6 had flame retardant effect in the barrier effect of the condensed phase and the quenching effect of the gas phase. This work explores the high-efficiency flame retardant and smoke-suppressive structures with co-curing properties for EP, thus promoting the wide application of EP materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...