Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Am Soc Mass Spectrom ; 35(1): 40-49, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38109269

ABSTRACT

A new, rapid, and automated method for the quantitation of 21 synthetic cathinones in urine was established using magnetic dispersive solid-phase extraction (MDSPE) in combination with direct analysis in real time-high-resolution mass spectrometry (DART-HRMS). Sample preparation and quantitation were verified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methcathinone-D3, α-PVP-D8, and proadifen (SKF525A) were used as internal standards. Magnetic HLB extractant and NaH2PO4/NaOH buffer (0.2 M, pH 7) were used in automatic MDSPE. All 21 synthetic cathinones could be detected and analyzed by DART-HRMS in under 1 min. It was proven that the linearities of 21 synthetic cathinones were suitable (R2 > 0.99) in the concentration ranges of 0.5-100 ng/mL or 1-100 ng/mL. The precision and accuracy values were all within ±15%, and the samples were stable under various conditions. The average time of each sample from preprocessing to completion of detection was approximately 2 min, allowing for rapid sample analysis. The relative error (RE) of the concentrations obtained by DART-HRMS and LC-MS/MS were within ±13.61%, and the linear coefficient (R) was 0.9964. The results of DART-HRMS and LC-MS/MS provided equivalent values at the 95% confidence level. In summary, a simple, fast, and convenient quantitation method via DART-HRMS was established. This application can be utilized to reduce backlogs and promote rapid case processing.


Subject(s)
Synthetic Cathinone , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Solid Phase Extraction , Reference Standards
2.
Neurotoxicology ; 98: 9-15, 2023 09.
Article in English | MEDLINE | ID: mdl-37429421

ABSTRACT

OBJECTIVE: Activity or expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) is diminished in some disease states such as cardiac failure and diabetes mellitus. A newly developed activator of SERCA, CDN1163, reportedly rescued or alleviated pathological conditions attributed to dysfunctional SERCA. We examined whether CDN1163 could relieve mouse neuronal N2A cell growth inhibition caused by cyclopiazonic acid (CPA, SERCA inhibitor). We also examined how CDN1163 affected cytosolic Ca2+, mitochondrial Ca2+ and mitochondrial membrane potential. METHODS: Cell viability was measured by MTT assay and trypan blue exclusion test. Cytosolic Ca2+, mitochondrial Ca2+ and mitochondrial membrane potential were measured using fura 2, Rhod-2 and JC-1, respectively, as fluorescent probes. RESULTS: CDN1163 (10 µM) itself suppressed cell proliferation, and did not alleviate CPA's inhibitory effect (and vice versa). Cell cycle was arrested at the G1 phase after CDN1163 treatment. CDN1163 treatment caused a slow yet persistent cytosolic [Ca2+] elevation partly due to Ca2+ release from an internal store other than the CPA-sensitive endoplasmic reticulum (ER). Treatment with CDN1163 for 3 h raised mitochondrial Ca2+ level and such increase was suppressed by MCU-i4 (an inhibitor of mitochondria Ca2+ uniporter, MCU), suggesting Ca2+ entered the mitochondrial matrix through MCU. Treatment of cells with CDN1163 up to 2 days resulted in mitochondrial hyperpolarization. CONCLUSION: CDN1163 caused internal Ca2+ leak, cytosolic Ca2+ overload, mitochondrial Ca2+ elevation and hyperpolarization, cell cycle arrest and cell growth inhibition.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Mice , Animals , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Aminoquinolines/metabolism , Aminoquinolines/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Cell Cycle Checkpoints , Calcium/metabolism
3.
Forensic Toxicol ; 41(1): 126-134, 2023 01.
Article in English | MEDLINE | ID: mdl-36652071

ABSTRACT

PURPOSE: This study aims to develop and validate a rapid, simple, and efficient bioanalytical method for the simultaneous quantification of phenobarbital and barbital in human whole blood using liquid-liquid extraction combined with direct analysis in real time (DART) and high-resolution mass spectrometry (HRMS). METHOD: Phenobarbital-d5 and aprobarbital were selected as internal standards (ISs) of phenobarbital and barbital, respectively. A mixed solvent of o-xylene and ethyl acetate at a ratio of 1:6 was used to extract analytes of interest and ISs from 100 µL of human whole blood samples. Phenobarbital and barbital were detected by DART-HRMS. The proposed method has been validated in accordance with United States Food and Drug Administration Guidelines for Bioanalytical Method Validation in terms of selectivity, linearity, accuracy, precision, matrix effect, recovery, stability, and dilution integrity. RESULTS: The lower limits of quantification (LLOQs) of phenobarbital and barbital were both 10 ng/mL. The linearities were in the range of 10-1000 ng/mL (R2 ≥ 0.99). The mean recovery values of phenobarbital and barbital were 99.7% and 88.1%, respectively. The interday and intraday precision values were less than 10.4%, and the interday and intraday accuracy values ranged from 87.6 to 106.7%. Furthermore, the validated method was applied to four cases of phenobarbital poisoning at the Shanghai Institute of Forensic Science. CONCLUSION: The developed and fully validated method enabled the simultaneous quantification of phenobarbital and barbital in human whole blood and was successfully applied to authentic cases.


Subject(s)
Barbital , Phenobarbital , United States , Humans , China , Mass Spectrometry/methods , Liquid-Liquid Extraction
4.
Fundam Clin Pharmacol ; 37(2): 253-262, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36191338

ABSTRACT

Afatinib is used to treat non-small cell lung cancer cells (NSCLC), and its mechanism involves irreversible inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase. In this study, we examined if afatinib had cytotoxic action against NSCLC other than inhibition of tyrosine kinase. Afatinib (1-30 µM) caused apoptotic death in A549 NSCLC in a concentration-dependent manner. Afatinib triggered Ca2+ influx without causing Ca2+ release, and the Ca2+ influx was unaffected by sodium orthovanadate (SOV, an inhibitor of tyrosine phosphatase), suggesting that afatinib-triggered Ca2+ response was unrelated to its inhibition of tyrosine kinase. Addition of afatinib also promoted Mn2+ influx. Ca2+ influx triggered by afatinib was resistant to SKF96365 and ruthenium red (two general blockers of TRP channels) and, unexpectedly, Ni2+ (a non-specific Ca2+ channel blocker). Afatinib caused an increase in mitochondrial Ca2+ level, an initial mitochondrial hyperpolarization (4 h) and followed by mitochondrial potential collapse (24-48 h). Afatinib-induced cell death was slightly but significantly alleviated in low extracellular Ca2+ condition or under pharmacological block of mitochondrial permeability transition pore (MPTP) opening by cyclosporin A. Therefore, in addition to tyrosine kinase inhibition as a major anti-cancer mechanism of afatinib, stimulation of an atypical Ca2+ influx pathway, mitochondrial Ca2+ overload, and potential collapse in part contribute to afatinib-induced cell death.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Afatinib/pharmacology , Afatinib/therapeutic use , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , ErbB Receptors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
5.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361610

ABSTRACT

Cerebrovascular disease is one of the leading causes of disability and death worldwide, and seeking a potential treatment is essential. Trilinolein (TriL) is a natural triacylglycerol presented in several plants. The effects of TriL on cerebrovascular diseases such as cerebral ischemia and carotid stenosis have never been studied. Accordingly, we investigated the protection of TriL on cerebral ischemia/reperfusion (I/R) and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. The cerebral infarction area, the intima to media area (I/M ratio), and proliferating cell nuclear antigen (PCNA)-staining of the carotid artery were measured. Platelet-derived growth factor (PDGF)-BB-stimulated A7r5 cell migration and potential mechanisms of TriL were investigated by wound healing, transwell, and Western blotting. TriL (50, 100, and 200 mg/kg, p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive apoptosis; intimal hyperplasia; and PCNA-positive cells in rodents. TriL (5, 10, and 20 µM) significantly inhibited PDGF-BB-stimulated A7r5 cell migration and reduced matrix metalloproteinase-2 (MMP-2), Ras, MEK, and p-ERK protein levels in PDGF-BB-stimulated A7r5 cells. TriL is protective in models of I/R-induced brain injury, carotid artery ligation-induced intimal hyperplasia, and VSMC migration both in vivo and in vitro. TriL could be potentially efficacious in preventing cerebral ischemia and cerebrovascular diseases.


Subject(s)
Matrix Metalloproteinase 2 , Muscle, Smooth, Vascular , Apoptosis , Becaplermin/pharmacology , Becaplermin/metabolism , Cell Movement , Cell Proliferation , Cerebral Infarction/pathology , Hyperplasia/metabolism , Matrix Metalloproteinase 2/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Signal Transduction , Triglycerides/metabolism
6.
Life Sci ; 308: 120913, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36037871

ABSTRACT

AIMS: Lung type 2 alveolar cells, by secreting surfactant to lower surface tension, contribute to enhance lung compliance. Stretching, as a result of lung expansion, triggers type 1 alveolar cell to release ATP, which in turn stimulates Ca2+-dependent surfactant secretion by neighboring type 2 cells. In this report, we studied ATP-triggered Ca2+ signaling in human alveolar type 2 A549 cells. MAIN METHODS: Ca2+ signaling was examined using microfluorimetric measurement with fura-2 as fluorescent dye. KEY FINDINGS: Ca2+ oscillations triggered by ATP relied on inositol 1,4,5-trisphosphate-induced Ca2+ release and store-operated Ca2+ entry. Pathological conditions such as influenza virus infection and diabetes reportedly inhibit sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that a very mild inhibition of SERCA by cyclopiazonic acid (CPA) sufficed to decrease Ca2+ oscillation frequency and the percentage of cells exhibiting Ca2+ oscillations. Ochratoxin A (OTA), an activator of SERCA, could prevent the suppressive effects by CPA. Inhibition of SERCA by hydrogen peroxide also suppressed Ca2+ oscillations. Interestingly, hydrogen peroxide-induced inhibition was prevented by OTA but aggravated by CDN1163, an allosteric activator of SERCA. CDN1163 also had an untoward effect of releasing intracellular Ca2+. SIGNIFICANCE: Different modes of activation of SERCA may determine the outcome of rescue of Ca2+ oscillations in case of SERCA inhibition in alveolar type 2 cells.


Subject(s)
Alveolar Epithelial Cells , Diabetes Mellitus, Type 2 , A549 Cells , Adenosine Triphosphate/metabolism , Alveolar Epithelial Cells/metabolism , Aminoquinolines , Benzamides , Calcium/metabolism , Calcium Signaling/physiology , Fluorescent Dyes , Fura-2/pharmacology , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Inositol 1,4,5-Trisphosphate/pharmacology , Ochratoxins , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Surface-Active Agents
7.
ACS Appl Mater Interfaces ; 14(16): 19012-19022, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35421305

ABSTRACT

Recently, two-dimensional (2D) van der Waals heterostructures (vdWHs) have exhibited emergent electronic and optical properties due to their peculiar phonons and excitons, which lay the foundation for the development of photoelectronic devices. The dielectric environment plays an important role in the interlayer coupling of vdWHs. Here, we studied the interlayer and extra-layer dielectric effects on phonon and exciton properties in WS2/MoS2 and MoS2/WS2 vdWHs by Raman and photoluminescence (PL) spectroscopy. The ultralow frequency (ULF) Raman modes are insensitive to atomic arrangement at the interface between 1LW and 1LM and dielectric environments of neighboring materials, and the layer breathing mode (LBM) frequency follows that of WS2. The shift of high-frequency (HF) Raman modes is attributable to interlayer dielectric screening and charge transfer effects. Furthermore, the energy of interlayer coupling exciton peak I is insensitive to atomic arrangement at the interface between 1LW and 1LM and its energy follows that of MoS2, but the slight intensity difference in inversion vdWHs means that the substrate's dielectric properties may induce doping on the bottom layer. This paper provides fundamental understanding of phonon and exciton properties of such artificially formed vdWHs structures, which is important for new insights into manipulating the performances of potential devices.

8.
J Cardiovasc Pharmacol ; 79(5): 749-757, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35239284

ABSTRACT

ABSTRACT: Propofol, a general anesthetic administered intravenously, may cause pain at the injection site. The pain is in part due to irritation of vascular endothelial cells. We here investigated the effects of propofol on Ca2+ transport and pain mediator release in human umbilical vein endothelial cells (EA.hy926). Propofol mobilized Ca2+ from cyclopiazonic acid (CPA)-dischargeable pool but did not cause Ca2+ release from the lysosomal Ca2+ stores. Propofol-elicited Ca2+ release was suppressed by 100 µM ryanodine, suggesting the participation of ryanodine receptor channels. Propofol did not affect ATP-triggered Ca2+ release but abolished the Ca2+ influx triggered by ATP; in addition, propofol also suppressed store-operated Ca2+ entry elicited by CPA. Ca2+ clearance during CPA-induced Ca2+ discharge was unaffected by a low Na+ (50 mM) extracellular solution, but strongly suppressed by 5 mM La3+ (an inhibitor of plasmalemmal Ca2+ pump), suggesting Ca2+ extrusion was predominantly through the plasmalemmal Ca2+ pump. Propofol mimicked the effect of La3+ in suppressing Ca2+ clearance. Propofol also stimulated release of pain mediators, namely, reactive oxygen species and bradykinin. Our data suggest propofol elicited Ca2+ release and repressed Ca2+ clearance, causing a sustained cytosolic [Ca2+]i elevation. The latter may cause reactive oxygen species and bradykinin release, resulting in pain.


Subject(s)
Propofol , Ryanodine Receptor Calcium Release Channel , Adenosine Triphosphate , Bradykinin/pharmacology , Calcium/metabolism , Endothelial Cells/metabolism , Humans , Pain , Propofol/pharmacology , Reactive Oxygen Species , Ryanodine/pharmacology
9.
Chin J Physiol ; 65(6): 277-281, 2022.
Article in English | MEDLINE | ID: mdl-36588353

ABSTRACT

Ca2+-sensing receptors (CaSRs) are G protein-coupled receptors activated by elevated concentrations of extracellular Ca2+. In our previous works, we showed protein and functional expression of CaSR in mouse cerebral endothelial cell (EC) (bEND.3); the CaSR response (high Ca2+-elicited cytosolic [Ca2+] elevation) was unaffected by suppression of phospholipase C but in part involved Ca2+ influx through transient receptor potential V1 (TRPV1) channels. In this work, we investigated if extracellular acidity affected CaSR-mediated Ca2+ influx triggered by high (3 mM) Ca2+ (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 mM cinacalcet (positive allosteric modulator of CaSR). Extracellular acidosis (pH 6.8 and pH 6.0) strongly suppressed cytosolic [Ca2+] elevation triggered by high Ca2+, spermine, and cinacalcet; acidosis also inhibited Mn2+ influx stimulated by high Ca2+ and cinacalcet. Purinoceptor-triggered Ca2+ response, however, was not suppressed by acidosis. Extracellular acidity also did not affect membrane potential, suggesting suppressed CaSR-mediated Ca2+ influx in acidity did not result from the reduced electrical driving force for Ca2+. Our results suggest Ca2+ influx through a putative CaSR-TRP complex in bEND.3 EC was sensitive to extracellular pH.


Subject(s)
Calcium Signaling , Endothelial Cells , Mice , Animals , Endothelial Cells/metabolism , Cinacalcet/pharmacology , Cinacalcet/metabolism , Spermine/pharmacology , Spermine/metabolism , Membrane Potentials , Calcium/metabolism
10.
Anal Methods ; 13(42): 5048-5055, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34647545

ABSTRACT

For the rapid quantitation of three synthetic cathinones, namely 1-(4-chlorophenyl)-2-(1-pyrrolidinyl)pentan-1-one (4-Cl-α-PVP), 1-(4-methylphenyl)-2-(methylamino)pentan-1-one (4-MPD), and 1-(5,6,7,8-tetrahydronaphthalen-2-yl)-2-(1-pyrrolidinyl)pentan-1-one (ß-TH-naphyrone), in urine, a new method was established using magnetic dispersive solid-phase extraction (MDSPE) combined with direct analysis in real time and high-resolution mass spectrometry (DART-HRMS). Methcathinone-D3 and proadifen (SKF525A) were used as the internal standards. Hydrophobic magnetic adsorbents were used and consisted of hydrophobic functional group (divinylbenzene) and hydrophilic functional group (vinylpyrrolidone) at a ratio of 3 : 1, and NaH2PO4//NaOH buffer (0.2 M, pH 7) was used in MDSPE. Detection was conducted by DART-HRMS in less than 1 min. For 4-Cl-α-PVP, 4-MPD and ß-TH-Naphyrone, the limits of detection were 0.1 ng mL-1, 0.05 ng mL-1 and 0.1 ng mL-1, and the linear ranges were 0.5-100 ng mL-1, 0.2-100 ng mL-1 and 0.2-100 ng mL-1, respectively. The correlation coefficients were all greater than 0.99. The precision and deviation of accuracy were all within ±15%, and the stability of the samples was high under various conditions. The method was successfully applied to detect 4-Cl-α-PVP, 4-MPD and ß-TH-naphyrone in rat urine after subcutaneous administration. In summary, a fast and convenient detection method was established, providing new and effective technical support for the rapid quantitation of three synthetic cathinones (4-Cl-α-PVP, 4-MPD and ß-TH-Naphyrone) for forensic purposes.


Subject(s)
Alkaloids , Alkaloids/chemistry , Alkaloids/urine , Animals , Magnetic Phenomena , Mass Spectrometry/methods , Rats , Solid Phase Extraction
11.
Chin J Physiol ; 64(4): 202-209, 2021.
Article in English | MEDLINE | ID: mdl-34472451

ABSTRACT

Gamma-linolenic acid (GLA), a natural fatty acid obtained from oils of various vegetables and seeds, has been demonstrated as an anticancer agent. In this work, we investigated the anticancer effects of GLA on breast cancer BT-474 cells. GLA at 30 µM, a concentration reportedly within the range of circulating concentrations in clinical studies, caused apoptotic cell death. GLA caused an elevation in mitochondrial Ca2+ level and a decrease in mitochondrial membrane potential. GLA treatment depleted cyclopiazonic acid (CPA)-sensitive Ca2+ store and triggered substantial Ca2+ influx. Intracellular Ca2+ release triggered by GLA was suppressed by 3 µM xestospongin C (XeC, IP3 receptor-channel blocker) and 100 µM ryanodine (ryanodine receptor-channel blocker), suggesting that the Ca2+ release was via IP3 receptor-channel and ryanodine receptor-channel. Increased expressions of p-eIF2α and CHOP were observed in GLA-treated cells, suggesting GLA-treated cells had increased expressions of p-eIF2α and CHOP, which suggest endoplasmic reticulum (ER) stress. In addition, GLA elicited increased production of reactive oxygen species. Taken together, our results suggest a basal level of GLA induced apoptotic cell death by causing Ca2+ overload, mitochondrial dysfunction, Ca2+ store depletion, ER stress, and oxidative stress. This is the first report to show that GLA caused Ca2+ store depletion and ER stress. GLA-induced Ca2+ store depletion resulted from opening of IP3 receptor-channel and ryanodine receptor-channel.


Subject(s)
Breast Neoplasms , gamma-Linolenic Acid , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Female , Humans , Oxidative Stress , gamma-Linolenic Acid/metabolism
12.
Chin J Physiol ; 64(2): 80-87, 2021.
Article in English | MEDLINE | ID: mdl-33938818

ABSTRACT

Ca2+-sensing receptors (CaSR), activated by elevated concentrations of extracellular Ca2+, have been known to regulate functions of thyroid cells, neurons, and endothelial cells (EC). In this report, we studied CaSR-mediated Ca2+ influx in mouse cerebral microvascular EC (bEND.3 cells). Cytosolic free Ca2+ concentration and Mn2+ influx were measured by fura-2 microfluorometry. High (3 mM) Ca2+ (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 µM cinacalcet (positive allosteric modulator of CaSR) all triggered Ca2+ influx; however, spermine, unlike high Ca2+ and cinacalcet, did not promote Mn2+ influx and its response was poorly sensitive to SKF 96365, a TRP channel blocker. Consistently, 2-aminoethoxydiphenyl borate and ruthenium red (two other general TRP channel blockers) suppressed Ca2+ influx triggered by cinacalcet and high Ca2+ but not by spermine. Ca2+ influx triggered by high Ca2+, spermine, and cinacalcet was similarly suppressed by A784168, a potent and selective TRPV1 antagonist. Our results suggest that CaSR activation triggered Ca2+ influx via TRPV1 channels; intriguingly, pharmacological, and permeability properties of such Ca2+ influx depended on the stimulating ligands.


Subject(s)
Calcium Signaling , Endothelial Cells , Animals , Calcium/metabolism , Endothelial Cells/metabolism , Mice , Receptors, Calcium-Sensing/metabolism
13.
Phys Chem Chem Phys ; 23(16): 9962-9970, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33870393

ABSTRACT

Two-dimensional transition metal dichalcogenides (TMDCs) are promising in spintronics due to their spin-orbit coupling, but their intrinsic non-magnetic properties limit their further development. Here, we focus on the energy landscapes of TMDC (MX2, M = Mo, W and X = S, Se, Te) monolayers by rhenium (Re) substitution doping under axial strains, which controllably drive 1H ↔ 1Td structural transformations. For both 1H and 1Td phases without strain, Re-doped TMDCs have an n-type character and are non-magnetic, but the tensile strain could effectively induce and modulate the magnetism. Specifically, 1H-Re0.5Mo0.5S2 gets a maximum magnetic moment of 0.69 µB at a 6% uniaxial tensile strain along the armchair direction; along the zigzag direction it exhibits a significant magnetic moment (0.49 µB) at a 2.04% uniaxial tensile strain but then exhibits no magnetism in the range of [5.10%, 7.14%]. By contrast, for 1Td-Re0.5Mo0.5S2 a critical uniaxial tensile strain along the zigzag direction reaches up to ∼9.18%, and a smaller uniaxial tensile strain (∼5.10%) along the zigzag direction is needed to induce the magnetism in 1Td-Re0.5M0.5Te2. The results reveal that the magnetism of Re-doped TMDCs could be effectively induced and modulated by the tensile strain, suggesting that strain engineering could have significant applications in doped TMDCs.

14.
Eur J Pharmacol ; 904: 174115, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33901459

ABSTRACT

In this report we examined the effects of lidocaine on Ca2+ homeostasis of neuronal cells using microfluorimetric measurement of cytosolic Ca2+ with fura 2 as probe. In mouse neuroblastoma N2A cells, 10 mM lidocaine caused Ca2+ release from the cyclopiazonic acid (CPA)-dischargeable pool and abolished ATP-triggered Ca2+ release. Lidocaine-triggered Ca2+ release was not affected by xestospongin C (XeC), an inositol 1,4,5-trisphosphate receptor (IP3R) inhibitor. N2A cells did not have functional ryanodine receptors (RYR) (absence of caffeine response) and we used differentiated NG108-15 cells (presence of caffeine response) for further experiments. Caffeine-triggered Ca2+ release was unaffected by a brief lidocaine exposure, but was eliminated after a prolonged treatment of lidocaine, suggesting lidocaine abolished caffeine action possibly not by interfering caffeine binding but via Ca2+ store depletion. Lidocaine-elicited Ca2+ release was unaffected by XeC or a high concentration of ryanodine, suggesting Ca2+ release was not via IP3R or RYR. Lidocaine did not affect nigericin-dischargeable lysosomal Ca2+ stores. Lastly, we observed that lidocaine suppressed CPA-induced store-operated Ca2+ influx in both N2A cells and differentiated NG108-15 cells. Our results suggest two novel actions of lidocaine in neuronal cells, namely, depletion of Ca2+ store (via an IP3R- and RYR-independent manner) and suppression of store-operated Ca2+ influx.


Subject(s)
Anesthetics, Local/pharmacology , Calcium/metabolism , Lidocaine/pharmacology , Neurons/metabolism , Adenosine Triphosphate/pharmacology , Animals , Biological Transport/drug effects , Caffeine/pharmacology , Cell Line, Tumor , Cytosol/metabolism , Indoles/pharmacology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Macrocyclic Compounds/pharmacology , Mice , Microfluidic Analytical Techniques , Neurons/drug effects , Oxazoles/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
15.
Vet Parasitol ; 291: 109326, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33545560

ABSTRACT

Parabronemosis is a disease that severely threatens camel health, causing huge economic losses to industries involved in camel husbandry. Previous studies have reported that horn flies (Haematobia irritans) act as intermediate hosts of Parabronema skrjabini; however, the infection and developmental processes of P. skrjabini in horn flies remain unclear. In the present study, the infection rates of P. skrjabini were determined in morphologically and molecularly identified horn flies collected from Bactrian camels (Camelus bactrianus) producing regions in Inner Mongolia, China that have high P. skrjabini infection rates. The horn flies were dissected to obtain the nematode larvae at various instar stages. The P. skrjabini found in the different instar stages of horn fly instars were counted and identified to assess the infection and developmental status. Nematode larvae at different developmental stages were obtained from the horn fly instars for further molecular analysis. Sequencing results confirmed that the nematode larvae were P. skrjabini. Furthermore, we found that the mean growth rate of the nematode larva increased as the horn fly instars develops. The results suggested that P. skrjabini infected the horn flies at the larval instar stage, and that the nematode larvae developed simultaneously with the horn fly instars stages. Our findings provide useful information into the elucidation of P. skrjabini infection and life history by studying horn fly development.


Subject(s)
Muscidae/parasitology , Nematoda/growth & development , Animals , China , Host-Parasite Interactions , Life Cycle Stages
16.
Talanta ; 217: 121057, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32498861

ABSTRACT

With the increasing abuse of fentanyl and its derivatives, it is urgent to develop techniques that can rapidly detect these compounds in different types of matrices. In this work, we developed a miniature mass spectrometer-based method for the fast and on-site analysis of fentanyl compounds. Optimization of several direct sampling procedures such as paper capillary spray cartridge with a miniature mass spectrometry system enables sensitive analysis of multiple fentanyl compounds. This system was evaluated by analysis of fentanyl and its derivatives in several types of beverage, showing limits of detection (LODs) as low as 10 ppb. It has also been applied into analysis of fentanyl compounds on the surface of a dusty plastic bag, showing LODs of 1 ng/cm2. A precursor ion scan method was also developed for fast screening of multiple fentanyl compounds. This system has also been applied in the analysis of fentanyl in urine samples.

17.
Biochem Biophys Res Commun ; 526(1): 117-121, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32197839

ABSTRACT

Tannic acid (TA) is a polyphenol compound present in wines and many beverages. Although previous works have shown that TA could cause vasodilation in an endothelial cell (EC)-dependent manner, there is hitherto no report showing whether TA could raise EC cytosolic Ca2+ concentration. In this work we examined the effects of TA on cytosolic Ca2+ of mouse brain bEND.3 EC. TA (1-30 µM) caused a slow elevation in cytosolic Ca2+ level in a concentration-dependent manner. At 30 µM, TA triggered Ca2+ influx without causing intracellular Ca2+ release. TA-triggered Ca2+ influx was suppressed by Ni2+ (a non-specific Ca2+ channel blocker), ruthenium red and SKF 96365 (non-specific TRP channel blockers), CBA (a selective TRPM4 inhibitor) and M 084 (a selective TRPC4/C5 blocker). However, TA-triggered Ca2+ influx pathway was not permeable to Mn2+. Our results suggest TA activated TRP channels, possibly TRPM4 and TRPC4/C5, to promote influx of Ca2+.


Subject(s)
Beverages/analysis , Calcium/metabolism , Endothelial Cells/metabolism , Tannins/analysis , Transient Receptor Potential Channels/metabolism , Vasodilator Agents/analysis , Wine/analysis , Animals , Calcium Signaling/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Imidazoles/pharmacology , Manganese/metabolism , Mice , Nickel/toxicity , Ruthenium Red/pharmacology , Transient Receptor Potential Channels/antagonists & inhibitors
18.
Z Naturforsch C J Biosci ; 75(3-4): 65-73, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32092040

ABSTRACT

Intracellular polyamines such as spermine and spermidine are essential to cell growth in normal and especially in cancer cells. However, whether extracellular polyamines affect cancer cell survival is unknown. We therefore examined the actions of extracellular polyamines on breast cancer BT474 cells. Our data showed that spermine, spermidine, and putrescine decreased cell viability by apoptosis. These polyamines also elicited Ca2+ signals, but the latter were unlikely triggered via Ca2+-sensing receptor (CaSR) as BT474 cells have been demonstrated previously to lack CaSR expression. Spermine-elicited Ca2+ response composed of both Ca2+ release and Ca2+ influx. Spermine caused a complete discharge of the cyclopiazonic acid (CPA)-sensitive Ca2+ pool and, expectedly, endoplasmic reticulum (ER) stress. The Ca2+ influx pore opened by spermine was Mn2+-impermeable, distinct from the CPA-triggered store-operated Ca2+ channel, which was Mn2+-permeable. Spermine cytotoxic effects were not due to oxidative stress, as spermine did not trigger reactive oxygen species formation. Our results therefore suggest that spermine acted on a putative polyamine receptor in BT474 cells, causing cytotoxicity by Ca2+ overload, Ca2+ store depletion, and ER stress.


Subject(s)
Breast Neoplasms/metabolism , Calcium/metabolism , Polyamines/pharmacology , Receptors, Calcium-Sensing/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Female , Gene Expression Regulation, Neoplastic , Homeostasis , Humans , Putrescine/pharmacology , Spermidine/pharmacology , Spermine/pharmacology
19.
Fundam Clin Pharmacol ; 34(2): 213-221, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31618480

ABSTRACT

Quercetin is a flavonol polyphenol widely found in many vegetables, grains, and fruits. Quercetin has been shown to inhibit proliferation and invasion of various glioma cells and is regarded as a potential anticancer agent against glioma. However, whether and how this drug could affect brain blood vessels and endothelial cells (EC) are less understood. Further, there is hitherto no report on how quercetin affects brain EC Ca2+ homeostasis. In this report, we investigated the effects of quercetin on Ca2+ homeostasis in mouse brain bEnd.3 EC. We demonstrated that quercetin raised cytosolic Ca2+ level in a concentration-dependent manner. Quercetin-triggered Ca2+ signal composed of both internal Ca2+ release and extracellular Ca2+ influx. Quercetin caused Ca2+ release from the endoplasmic reticulum, and consistently, inhibition of inositol 1,4,5-trisphosphate receptor (IP3R) by xestospongin C (XeC) suppressed quercetin-triggered Ca2+ release. Quercetin also caused Ca2+ release from lysosomes, an observation in concordance with the inhibition of quercetin-triggered Ca2+ release by trans-Ned-19, a blocker of two-pore channels. As quercetin depleted intracellular Ca2+ storage, it suppressed ATP-induced Ca2+ release and thereby blunted ATP-triggered Ca2+ signaling. In addition, quercetin co-treatment significantly suppressed ATP-stimulated nitric oxide release. Our work therefore showed, for the first time, quercetin perturbed intracellular Ca2+ stores and strongly suppressed ATP-triggered response in bEnd.3 cells.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Endothelial Cells/drug effects , Quercetin/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Cell Line , Dose-Response Relationship, Drug , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endothelial Cells/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Nitric Oxide/metabolism , Quercetin/administration & dosage
20.
Fundam Clin Pharmacol ; 33(6): 604-611, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31206802

ABSTRACT

In a previous publication when we studied the purinergic receptor with which ATP interacted in mouse brain bEND.3 endothelial cells, we observed addition of 3 µm ARC 118925XX (ARC; selective P2Y2 antagonist) strongly suppressed ATP-triggered Ca2+ release, suggesting the response was mediated via P2Y2 receptors. We here report ARC unexpectedly promoted substantial Ca2+ influx even when ATP-triggered Ca2+ release was largely inhibited. Since this large Ca2+ influx may have important pharmacological significance, we proceeded to investigate its mechanism. ARC did not trigger intracellular Ca2+ release thus suggesting Ca2+ influx triggered by ARC was not store-operated. ARC-triggered Ca2+ influx could be blocked by 1 mm Ni2+ , a general Ca2+ channel blocker, but not by SK&F 96365, a nonselective TRP channel blocker. Unexpectedly, ARC promoted influx of Na+ and La3+ , but not Mn2+ . This is a surprising finding, since Mn2+ is conventionally used as a Ca2+ surrogate ion (as it permeates Ca2+ channel), and La3+ is classically used as a potent Ca2+ channel antagonist. Electrophysiological examination showed ARC did not stimulate any cation currents. Therefore, ARC opened, rather than a cation channel pore, an unidentified Ca2+ influx pathway which was Na+ - and La3+ -permeable but Mn2+ -impermeable.


Subject(s)
Endothelial Cells/metabolism , Furans/pharmacology , Piperidines/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Tetrazoles/pharmacology , Animals , Calcium/metabolism , Cells, Cultured , Manganese/metabolism , Mice , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...