Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 13(48): 20531-20540, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34859803

ABSTRACT

Lymphocytes play a vital role in immunosurveillance through sensing biomolecules and eliminating targeted invaders. Compared with conventional therapies that depend on drug loading, lymphocytes are advantageous as they are able to ensure self-regulated therapeutics. Here, novel multi-compartmental DNA hydrogel particles were synthesized using a microfluidic assembly for intelligent cancer treatment via the logic-based control of siRNA release without external stimulation. The sensing sequence (D1) was compartmentalized from the treatment sequence (D2) with the use of core-shell DNA hydrogel particles. When D1 detects a cancer-associated biomarker, miRNA-21, a sequence cascade is triggered to release siRNA from D2, effectively eliminating the targeted cancer cells via lymphocyte-inspired precision medicine.


Subject(s)
Hydrogels , Microfluidics , DNA , Hydrogel, Polyethylene Glycol Dimethacrylate , Lymphocytes , Precision Medicine
2.
Sci Adv ; 7(47): eabj1617, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797719

ABSTRACT

The confluence of wireless technology and biosensors offers the possibility to detect and manage medical conditions outside of clinical settings. Wound infections represent a major clinical challenge in which timely detection is critical for effective interventions, but this is currently hindered by the lack of a monitoring technology that can interface with wounds, detect pathogenic bacteria, and wirelessly transmit data. Here, we report a flexible, wireless, and battery-free sensor that provides smartphone-based detection of wound infection using a bacteria-responsive DNA hydrogel. The engineered DNA hydrogels respond selectively to deoxyribonucleases associated with pathogenic bacteria through tunable dielectric changes, which can be wirelessly detected using near-field communication. In a mouse acute wound model, we demonstrate that the wireless sensor can detect physiologically relevant amounts of Staphylococcus aureus even before visible manifestation of infection. These results demonstrate strategies for continuous infection monitoring, which may facilitate improved management of surgical or chronic wounds.

3.
ACS Nano ; 15(6): 9328-9354, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34124880

ABSTRACT

The era of the Internet of Things (IoT) requires sustainable and convenient methods to power widely distributed sensing devices. Self-powered systems have emerged as a potential solution that utilizes ambient energy from environmental sources such as electromagnetic fields, mechanical motion, solar power, and temperature gradients. Recently, the integration of wireless technologies with self-powered systems has attracted significant attention as a way to address challenges in energy harvesting and transport without the cost and inherent physical constraints of wires. This review summarizes recent progress in the application of wireless technology in self-powered systems for applications in harvesting ambient electromagnetic energy and in transferring power between devices. In addition, challenges and development trends in the future of wireless self-powered sensor networks are discussed.

4.
J Neurol Sci ; 414: 116819, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32339967

ABSTRACT

BACKGROUND: Pathogenic variants of the ARID1B gene are recognized as the most common cause of Coffin-Siris syndrome (CSS) and also one of the most common causes for intellectual disability (ID). Reported ARID1B variants in association with CSS are mostly from patients of European ancestry. METHODS: We performed next-generation sequencing to identify pathogenic variants in patients with congenital disorders from the Genetics clinics. The identified variants were validated by Sanger sequencing. Parental samples were tested by Sanger sequencing to determine inheritance status. RESULTS: Truncating variants in ARID1B were identified in five unrelated Asian patients (one Malay, two Chinese and two Indian) with features of CSS. One was a nonsense mutation which had been documented in three other reports while the other four were novel variants, including two nonsense substitutions and two small deletions resulting in premature termination of translation. Similar to previous reports, all patients have developmental and speech delay, with additional presentations such as ectodermal/facial abnormalities commonly observed in CSS patients. CONCLUSIONS: Our results unveil ARID1B variants in association with CSS in multiple Southeast Asian ethnic groups, and confirm that variants associated with this disorder tend to be of the truncating type. This finding may provide additional insight into the function of the protein and the disease mechanism.


Subject(s)
Abnormalities, Multiple , DNA-Binding Proteins , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck/abnormalities , Transcription Factors , Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Micrognathism/genetics , Mutation/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...