Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 11(1): 155, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37475003

ABSTRACT

BACKGROUND: For more than a century, the Koch's postulates have been the golden rule for determining the causative agents in diseases. However, in cases of multiple pathogens-one disease, in which different pathogens can cause the same disease, the selection of microorganisms that regress infection is hard when Koch's postulates are applied. Microbiome approaches can obtain relatively complete information about disease-related microorganisms and can guide the selection of target microorganisms for regression infection. In the present study, whitish muscle syndrome (WMS) of Scylla paramamosain, which has typical symptoms with whitish muscle and blackened hemolymph was used as an example to establish a new research strategy that integrates microbiome approaches and Koch's postulates to determinate causative agents of multiple pathogens-one disease. RESULTS: Microbiome results revealed that Aeromonas, Acinetobacter, Shewanella, Chryseomicrobium, Exiguobacterium, Vibrio and Flavobacterium, and Kurtzmaniella in hemolymph were bacterial and fungal indicators for WMS. A total of 23 bacteria and 14 fungi were isolated from hemolymph and muscle tissues, and among the bacteria, Shewanella chilikensis, S. xiamenensis, Vibrio alginolyticus, S. putrefaciens, V. fluvialis, and V. parahaemolyticus were present in hemolymph and/or muscle tissues in each WMS crab, and the last three species were also present in three Healthy crabs. The target bacteria and fungi were further screened to regression infections based on two criteria: whether they belonged to the indicator genera for WMS, whether they were isolated from both hemolymph and muscle tissues in most WMS crabs. Only S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria. The six bacteria that met both two criteria and six fungi and another bacterium that unmatched any of two criteria were used to perform regression infection experiments based on Koch's postulates. S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria, and the results indicate that they cause WMS in crabs independently. CONCLUSIONS: This study fully demonstrated that our research strategy that integrates the microbiome and Koch's postulates can maximize the ability to catch pathogens in one net for the situation of multiple pathogens-one disease. Video Abstract.


Subject(s)
Brachyura , Microbiota , Vibrio , Animals , Brachyura/microbiology , Muscles
2.
Dev Comp Immunol ; 127: 104267, 2022 02.
Article in English | MEDLINE | ID: mdl-34626689

ABSTRACT

A Dicer2 gene from Scylla paramamosain, named SpDicer2, was cloned and characterized. The full length of SpDicer2 mRNA contains a 121 bp 5'untranslated region (UTR), an open reading frame (ORF) of 4518 bp and a 3' UTR of 850 bp. The SpDicer2 protein contains seven characteristic Dicer domains and showed 34%-65% identity and 54%-79% similarity to other Dicer protein domains, respectively. The mRNA of SpDicer2 was high expressed in hemocytes, intestine and gill and low expressed in the eyestalk and muscle. Moreover, expression of SpDicer2 was significantly responsive to challenges by mud crab reovirus (MCRV), Poly(I:C), LPS, Staphylococcus aureus and Vibrio parahaemolyticus. SpDicer2 was dispersedly presented in the cytoplasm except for a small amount in the nucleus. SpDicer2 could activate SpSTAT to translocate from the cytoplasm to the nucleus, and significantly increase the transcription activity of the wsv069 promoter, suggesting that SpDicer2 activated the JAK/STAT pathway. Furthermore, silencing of SpDicer2 in vivo increased the mortality of MCRV infected mud crab and the viral load in tissues and down-regulated the expression of multiple components of Toll, IMD and JAK-STAT pathways and almost all the examined immune effector genes. These results suggested that SpDicer2 could play an important role in defense against MCRV via activating the JAK/STAT signaling pathways in mud crab.


Subject(s)
Brachyura , Animals , Arthropod Proteins/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Phylogeny , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...