Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 57(40): 13177-13181, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30133087

ABSTRACT

Resolving atomic site-specific electronic properties and correlated substrate-molecule interactions is challenging in real space. Now, mapping of sub-10 nm sized Pt nanoislands on a Au(111) surface was achieved by tip-enhanced Raman spectroscopy, using the distinct Raman fingerprints of adsorbed 4-chlorophenyl isocyanide molecules. A spatial resolution better than 2.5 nm allows the electronic properties of the terrace, step edge, kink, and corner sites with varying coordination environments to be resolved in real space in one Pt nanoisland. Calculations suggest that low-coordinate atomic sites have a higher d-band electronic profile and thus stronger metal-molecule interactions, leading to the observed blue-shift of Raman frequency of the N≡C bond of adsorbed molecules. An experimental and theoretical study on Pt(111) and mono- and bi-atomic layer Pt nanoislands on a Au(111) surface reveals the bimetallic effect that weakens with the increasing number of deposited Pt adlayer.

2.
Faraday Discuss ; 140: 155-65; discussion 185-207, 2008.
Article in English | MEDLINE | ID: mdl-19213316

ABSTRACT

We describe a method for investigating the reaction mechanism of fuel cell systems by designing a spectroelectrochemical cell with functions of temperature and flow control to mimic the reaction condition of fuel cell systems and utilizing Au core Pt shell (Au@Pt) nanoparticles to enhance the Raman signal of the surface species on the surface of electrocatalysts. The cell consists of three parts: a thin-layer spectroelectrochemical reaction chamber with an optical window for Raman measurement, the heating chamber right beneath the reaction chamber, and a long spiral flow channel to preheat the solution to the desired temperature and effectively exchange the solution. The temperature of the solution can be easily controlled from room temperature to 80 degrees C, and the flow rate can be as high as 945 microl s(-1). The temperature and flow control is demonstrated by monitoring the changes in the cyclic voltammograms and the Raman signals. By synthesizing Au@Pt nanoparticles and assembling them on a Pt substrate, we can significantly enhance the Raman signal of surface species on the Pt shell surface, which allows us to detect strong signal of CO as the dissociative product of formic acid as well as the intermediate species of the oxidation process. The further development and perspectives of using SERS to study the electrocatalytic systems are discussed.


Subject(s)
Electrochemistry/instrumentation , Electrodes , Flow Injection Analysis/instrumentation , Heating , Specimen Handling/methods , Spectrum Analysis/methods , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
3.
Anal Bioanal Chem ; 388(1): 29-45, 2007 May.
Article in English | MEDLINE | ID: mdl-17318524

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has developed into one of the most important tools in analytical and surface sciences since its discovery in the mid-1970s. Recent work on the SERS of transition metals concluded that transition metals, other than Cu, Ag, and Au, can also generate surface enhancement as high as 4 orders of magnitude. The present article gives an overview of recent progresses in the field of Raman spectroscopy on transition metals, including experimental, theory, and applications. Experimental considerations of how to optimize the experimental conditions and calculate the surface enhancement factor are discussed first, followed by a very brief introduction of preparation of SERS-active transition metal substrates, including massive transition metal surfaces, aluminum-supported transition metal electrodes, and pure transition metal nanoparticle assembled electrodes. The advantages of using SERS in investigating surface bonding and reaction are illustrated for the adsorption and reaction of benzene on Pt and Rh electrodes. The electromagnetic enhancement, mainly lightning-rod effect, plays an essential role in the SERS of transition metals, and that the charge-transfer effect is also operative in some specific metal-molecule systems. An outlook for the field of Raman spectroscopy of transition metals is given in the last section, including the preparation of well-ordered or well-defined nanostructures, and core-shell nanoparticles for investigating species with extremely weak SERS signals, as well as some new emerging techniques, including tip-enhanced Raman spectroscopy and an in situ measuring technique.


Subject(s)
Electrodes , Metal Nanoparticles/chemistry , Surface Plasmon Resonance/methods , Transition Elements/chemistry , Adsorption , Benzene/analysis , Electrochemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...