Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36235416

ABSTRACT

Fertilization is an important part of citrus crop management. However, limited details are available about the fertilization approach on citrus plant development. A pot experiment for the fertilization approaches and fertigation levels were conducted in this study. Four fertilization approaches, namely, drip fertigation (DF), broadcast fertilization (CK+), hole fertilization (HF) and pour fertilization (PF) were tested. The fertigation level treatment included 100% (DF-337.5), 80% (DF-270), 60% (DF-202.5) and 40% (DF-135) fertilizer supply with DF, and the 100% fertilizer supply with broadcast fertilization were served as control (CK). The results showed that DF not only increased the absorptions of nitrogen (N), phosphorus (P) and potassium (K) but also promoted citrus plant height, stem diameter and dry weight. In fruit quality, DF had the highest fruit total soluble solid (TSS) and titratable acidity (TA) contents. For fertilizer loss, DF had the lowest N and K leaching losses of 9.26% and 4.05%, respectively, and the lowest N and K runoff losses among the approaches. Isotopic tracing with 15N indicated that DF had the highest fertilizer use efficiency. Based on the analysis of fertigation levels, DF approach with 60% fertilizer reduction could improve citrus plant development. Therefore, DF promoted citrus plant growth and fruit quality by accelerating fertilizer utilization and impairing fertilizer loss. The fertilizer amount in citrus production could be reduced significantly using DF.

2.
Plants (Basel) ; 11(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009047

ABSTRACT

Chewing texture is important for fresh citrus fruits, and the mastication trait of a segment directly determines chewing texture. Roughing disorder impairs the quality of Satsuma mandarin fruits, and it is typically correlated with intrinsic mastication inferiority (IMI). This study explored the role of segment membranes (SMs) in IMI. Similar to IMI in roughing-disordered fruits, segment shear force significantly enhanced relative to controls (CK); cell layers and cell wall thickness increased also in inferior masticating SMs. The 'Miyamoto Wase' cultivar exhibited larger segment shear force and more SM cell layers than 'Juxiangzao'. In SMs, vessel cells could be divided into outside layers where segments adjoin and inside layers where juice sacs grow from. The inside vessel cell layers in the inferior masticating SMs were denser. Vessels with a length of 200 to 300 µm and a diameter of 5 to 15 µm predominated in SMs. The average vessel diameter enlarged by 13% to 16.5% in inferior masticating SMs, depending on cultivars. Furthermore, there was a decrease in vessels with a diameter <5 µm and an increase in vessels >10 µm in the inferior masticating SMs. Between phenotypes, protopectin increased significantly throughout development of inferior masticating SMs, while water-soluble pectin increased during the later stages of development. In one inferior masticating SM sample, protopectin and water-soluble pectin levels were higher in the inner-ring area than those in the outer-ring area. Correspondingly, expression of CuPME21 which is involved in pectin hydrolysis was consistently upregulated in the inferior masticating SMs throughout fruit development. The findings in this work provide novel insights into citrus SM structure and its IMI.

3.
Int J Mol Sci ; 21(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630273

ABSTRACT

Jasmonic acid (JA) plays a crucial role in various biological processes including development, signal transduction and stress response. Allene oxide synthase (AOS) catalyzing (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT) to an unstable allene oxide is involved in the first step of JA biosynthesis. Here, we isolated the PtAOS1 gene and its promoter from trifoliate orange (Poncirus trifoliata). PtAOS1 contains a putative chloroplast targeting sequence in N-terminal and shows relative to pistachio (Pistacia vera) AOS. A number of stress-, light- and hormone-related cis-elements were found in the PtAOS1 promoter which may be responsible for the up-regulation of PtAOS1 under drought and JA treatments. Transient expression in tobacco (Nicotiana benthamiana) demonstrated that the P-532 (-532 to +1) fragment conferring drive activity was a core region in the PtAOS1 promoter. Using yeast one-hybrid, three novel proteins, PtDUF886, PtDUF1685 and PtRAP2.4, binding to P-532 were identified. The dual luciferase assay in tobacco illustrated that all three transcription factors could enhance PtAOS1 promoter activity. Genes PtDUF1685 and PtRAP2.4 shared an expression pattern which was induced significantly by drought stress. These findings should be available evidence for trifoliate orange responding to drought through JA modulation.


Subject(s)
Intramolecular Oxidoreductases/genetics , Poncirus/genetics , Stress, Physiological/genetics , Chloroplasts/metabolism , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Plant/genetics , Intramolecular Oxidoreductases/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Poncirus/metabolism , Promoter Regions, Genetic/genetics , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...