Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Neurol ; 24(1): 154, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714961

ABSTRACT

BACKGROUND: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by CGG repeat expansion of FMR1 gene. Both FXTAS and neuronal intranuclear inclusion disease (NIID) belong to polyglycine diseases and present similar clinical, radiological, and pathological features, making it difficult to distinguish these diseases. Reversible encephalitis-like attacks are often observed in NIID. It is unclear whether they are presented in FXTAS and can be used for differential diagnosis of NIID and FXTAS. CASE PRESENTATION: A 63-year-old Chinese male with late-onset gait disturbance, cognitive decline, and reversible attacks of fever, consciousness impairment, dizziness, vomiting, and urinary incontinence underwent neurological assessment and examinations, including laboratory tests, electroencephalogram test, imaging, skin biopsy, and genetic test. Brain MRI showed T2 hyperintensities in middle cerebellar peduncle and cerebrum, in addition to cerebellar atrophy and DWI hyperintensities along the corticomedullary junction. Lesions in the brainstem were observed. Skin biopsy showed p62-positive intranuclear inclusions. The possibilities of hypoglycemia, lactic acidosis, epileptic seizures, and cerebrovascular attacks were excluded. Genetic analysis revealed CGG repeat expansion in FMR1 gene, and the number of repeats was 111. The patient was finally diagnosed as FXTAS. He received supportive treatment as well as symptomatic treatment during hospitalization. His encephalitic symptoms were completely relieved within one week. CONCLUSIONS: This is a detailed report of a case of FXTAS with reversible encephalitis-like episodes. This report provides new information for the possible and rare features of FXTAS, highlighting that encephalitis-like episodes are common in polyglycine diseases and unable to be used for differential diagnosis.


Subject(s)
Ataxia , Encephalitis , Fragile X Syndrome , Tremor , Humans , Male , Middle Aged , Tremor/diagnosis , Tremor/genetics , Tremor/etiology , Fragile X Syndrome/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/complications , Ataxia/diagnosis , Ataxia/genetics , Encephalitis/diagnosis , Encephalitis/complications , Encephalitis/genetics , Encephalitis/pathology , Fragile X Mental Retardation Protein/genetics , Diagnosis, Differential , Intranuclear Inclusion Bodies/pathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/complications
2.
Seizure ; 111: 122-129, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625192

ABSTRACT

PURPOSE: The RELN gene encodes the secreted glycoprotein Reelin and has important functions in both developing and adult brains. In this study, we aimed to explore the association between the RELN and genetic generalized epilepsy (GGE). METHODS: We performed whole-exome sequencing on a cohort of 92 patients with GGE. Based on amino acid sequence alignments, allele frequency, pedigree validation and computational modeling, the RELN variants were identified and clinical features of cases were summarized. Cell-based Reelin secretion assays were examined by Western blotting. Alterations of mutant Reelin transport through the secretion pathway were detected by immunofluorescence staining. RESULTS: Three novel pathogenic RELN variants (3.26%; c.2260C>T/p.R754W, c.2914C>G/p.P972A and c.3029G>A/p.R1010H) were identified. All probands showed adolescence-onset generalized seizures characterized by generalized epileptiform discharges with normal EEG backgrounds, no or mild cognitive impairment, and responded well to anti-seizure medications. All these variants were located in the central regions from 1B to 2A consecutive repeats, and protein modeling demonstrated structural alterations in Reelin. Moreover, we found that these heterozygous missense variants significantly decreased the secretion of mutant proteins in HEK-293T cells, and this impairment was due to the altered transport of mutant Reelin in the secretion pathway. CONCLUSION: These results suggest that RELN is potentially associated with GGE. The phenotype of GGE caused by RELN variants is relatively mild, and the pathogenic mechanism may involve a loss-of-function.

3.
Acta Neuropathol ; 142(6): 1003-1023, 2021 12.
Article in English | MEDLINE | ID: mdl-34694469

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is neurodegenerative disease characterized by widespread inclusions. Despite the identification of GGC repeat expansion in 5'UTR of NOTCH2NLC gene in adult-onset NIIDs, its pathogenic mechanism remains unclear. Gain-of-function poly-amino-acid proteins generated by unconventional translation have been revealed in nucleotide repeat expansion disorders, inspiring us to explore the possibility of unconventional translation in NIID. Here we demonstrated that NOTCH2NLC 5'UTR triggers the translation of a polyglycine (polyG)-containing protein, N2NLCpolyG. N2NLCpolyG accumulates in p62-positive inclusions in cultured cells, mouse models, and NIID patient tissues with NOTCH2NLC GGC expansion. Translation of N2NLCpolyG is initiated by an upstream open reading frame (uORF) embedding the GGC repeats. N2NLCpolyG tends to aggregate with the increase of GGC repeat units, and displays phase separation properties. N2NLCpolyG aggregation impairs nuclear lamina and nucleocytoplasmic transport but does not necessarily cause acute death on neuronal cells. Our study suggests a similarity of pathogenic mechanisms between NIID and another GGC-repeat disease, fragile X-associated tremor ataxia syndrome. These findings expand our knowledge of protein gain-of-function in NIID, and further highlight evidence for a novel spectrum of diseases caused by aberrant polyG protein aggregation, namely the polyG diseases.


Subject(s)
Active Transport, Cell Nucleus/physiology , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/metabolism , Peptides/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Mice , Neurodegenerative Diseases/genetics , Open Reading Frames , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...