Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Mol Cancer ; 23(1): 113, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802795

ABSTRACT

BACKGROUND: The role of circRNAs in hepatocellular carcinoma (HCC) progression remains unclear. CircPIAS1 (circBase ID: hsa_circ_0007088) was identified as overexpressed in HCC cases through bioinformatics analysis. This study aimed to investigate the oncogenic properties and mechanisms of circPIAS1 in HCC development. METHODS: Functional analyses were conducted to assess circPIAS1's impact on HCC cell proliferation, migration, and ferroptosis. Xenograft mouse models were employed to evaluate circPIAS1's effects on tumor growth and pulmonary metastasis in vivo. Bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays were utilized to elucidate the molecular pathways influenced by circPIAS1. Additional techniques, including RNA pulldown, fluorescence in situ hybridization (FISH), chromatin immunoprecipitation (ChIP), qPCR, and western blotting, were used to further explore the underlying mechanisms. RESULTS: CircPIAS1 expression was elevated in HCC tissues and cells. Silencing circPIAS1 suppressed HCC cell proliferation and migration both in vitro and in vivo. Mechanically, circPIAS1 overexpression inhibited ferroptosis by competitively binding to miR-455-3p, leading to upregulation of Nuclear Protein 1 (NUPR1). Furthermore, NUPR1 promoted FTH1 transcription, enhancing iron storage in HCC cells and conferring resistance to ferroptosis. Treatment with ZZW-115, an NUPR1 inhibitor, reversed the tumor-promoting effects of circPIAS1 and sensitized HCC cells to lenvatinib. CONCLUSION: This study highlights the critical role of circPIAS1 in HCC progression through modulation of ferroptosis. Targeting the circPIAS1/miR-455-3p/NUPR1/FTH1 regulatory axis may represent a promising therapeutic strategy for HCC.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Carcinoma, Hepatocellular , Cell Proliferation , Ferroptosis , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Neoplasm Proteins , RNA, Circular , Animals , Female , Humans , Male , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , Ferroptosis/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Circular/genetics , Xenograft Model Antitumor Assays
2.
Inflammation ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613638

ABSTRACT

Autoimmune hepatitis (AIH) is a severe immune-mediated inflammatory liver disease that currently lacks feasible drug treatment methods. Our study aimed to evaluate the protective effect of succinic acid against AIH and provide a reliable method for the clinical treatment of AIH. We performed an in vivo study of the effects of succinic acid on concanavalin A (ConA)-induced liver injury in mice. We examined liver transaminase levels, performed hematoxylin and eosin (HE) staining, and observed apoptotic phenotypes in mice. We performed flow cytometry to detect changes in the number of neutrophils and monocytes, and used liposomes to eliminate the liver Kupffer cells and evaluate their role. We performed bioinformatics analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting to detect mitochondrial apoptosis-induced changes in proteins from the B-cell lymphoma 2(Bcl-2) family. Succinic acid ameliorated ConA-induced AIH in a concentration-dependent manner, as reflected in the survival curve. HE and TUNEL staining and terminal deoxynucleotidyl transferase dUTP nick end labeling revealed decreased alanine transaminase and aspartate aminotransferase levels, and reduced liver inflammation and apoptosis. RT-qPCR and enzyme-linked immunosorbent assay revealed that succinic acid significantly reduced liver pro-inflammatory cytokine levels. Flow cytometry revealed significantly decreased levels of liver neutrophils. Moreover, the protective effect of succinic acid disappeared after the Kupffer cells were eliminated, confirming their important role in the effect. Bioinformatics analysis, RT-qPCR, and western blotting showed that succinic acid-induced changes in proteins from the Bcl-2 family involved mitochondrial apoptosis, indicating the molecular mechanism underlying the protective effect of succinic acid. Succinic acid ameliorated ConA-induced liver injury by regulating immune balance, inhibiting pro-inflammatory factors, and promoting anti-apoptotic proteins in the liver. This study provides novel insights into the biological functions and therapeutic potential of succinic acid in the treatment of autoimmune liver injury.

4.
J Exp Clin Cancer Res ; 42(1): 303, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37968706

ABSTRACT

BACKGROUND: Despite remarkable advancements in cancer immunotherapy, the overall response rate to anti-programmed cell death-1 (anti-PD-1) therapy in hepatocellular carcinoma (HCC) patients remains low. Our previous study has demonstrated the critical role of CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) as a regulator of HCC development and progression. However, the possible impact of CacyBP on the tumor immune microenvironment has not yet been clarified. METHODS: The expressions of CacyBP and Myd88 in HCC cell lines and tissues was detected by bioinformatics analysis, real-time quantitative PCR, western blotting and immunohistochemistry. The interaction between CacyBP and Myd88 was measured using co-immunoprecipitation and immunofluorescence. In vitro and in vivo assays were used to investigate the regulation of CacyBP on tumor-associated macrophages (TAMs). RESULTS: We identified that CacyBP was positively correlated with Myd88, a master regulator of innate immunity, and Myd88 was a novel binding substrate downstream of CacyBP in HCC. Additionally, CacyBP protected Myd88 from Siah-1-mediated proteasome-dependent degradation by competitively binding to its Toll/interleukin-1 receptor (TIR) domain. Inhibition of CacyBP-Myd88 signaling subsequently diminished HDAC1-mediated H3K9ac and H3K27ac modifications on the CX3CL1 promoter and reduced its transcription and secretion in HCC cells. Moreover, by using in vitro and in vivo strategies, we demonstrated that depletion of CacyBP impaired the infiltration of TAMs and the immunosuppressive state of the tumor microenvironment, further sensitizing HCC-bearing anti-PD-1 therapy. CONCLUSIONS: Our findings suggest that targeting CacyBP may be a novel treatment strategy for improving the efficacy of anti-PD-1 immunotherapy in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Calcium-Binding Proteins/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Adaptor Proteins, Signal Transducing/metabolism , Macrophages/metabolism , Cell Line, Tumor , Tumor Microenvironment
5.
Diagnostics (Basel) ; 13(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37510109

ABSTRACT

Left ventricular ejection fraction (LVEF) plays as an essential role in the assessment of cardiac function, providing quantitative data support for the medical diagnosis of heart disease. Robust evaluation of the ejection fraction relies on accurate left ventricular (LV) segmentation of echocardiograms. Because human bias and expensive labor cost exist in manual echocardiographic analysis, computer algorithms of deep-learning have been developed to help human experts in segmentation tasks. Most of the previous work is based on the convolutional neural networks (CNN) structure and has achieved good results. However, the region occupied by the left ventricle is large for echocardiography. Therefore, the limited receptive field of CNN leaves much room for improvement in the effectiveness of LV segmentation. In recent years, Vision Transformer models have demonstrated their effectiveness and universality in traditional semantic segmentation tasks. Inspired by this, we propose two models that use two different pure Transformers as the basic framework for LV segmentation in echocardiography: one combines Swin Transformer and K-Net, and the other uses Segformer. We evaluate these two models on the EchoNet-Dynamic dataset of LV segmentation and compare the quantitative metrics with other models for LV segmentation. The experimental results show that the mean Dice similarity of the two models scores are 92.92% and 92.79%, respectively, which outperform most of the previous mainstream CNN models. In addition, we found that for some samples that were not easily segmented, whereas both our models successfully recognized the valve region and separated left ventricle and left atrium, the CNN model segmented them together as a single part. Therefore, it becomes possible for us to obtain accurate segmentation results through simple post-processing, by filtering out the parts with the largest circumference or pixel square. These promising results prove the effectiveness of the two models and reveal the potential of Transformer structure in echocardiographic segmentation.

6.
Lab Invest ; 103(7): 100130, 2023 07.
Article in English | MEDLINE | ID: mdl-36925047

ABSTRACT

Collectin subfamily member 10 (COLEC10), a C-type lectin mainly expressed in the liver, is involved in the development of hepatocellular carcinoma (HCC). However, its underlying molecular mechanism in HCC progression remains unknown. In this study, reduced COLEC10 expression in tumor tissues was validated using various HCC cohorts and was associated with poor patient prognosis. COLEC10 overexpression attenuated HCC cell growth and migration abilities in vitro and in vivo. We identified that COLEC10 was a novel interactor of 78-kDa glucose-regulated protein (GRP78), a master modulator of the unfolded protein response in the endoplasmic reticulum (ER). COLEC10 overexpression potentiated ER stress in HCC cells, as demonstrated by elevated expression levels of phosphorylated protein kinase RNA-like ER kinase, phosphorylated inositol-requiring protein 1α, activating transcription factor 4, DNA damage-inducible transcript 3, and X-box-binding protein 1s. The ER in COLEC10-overexpressing cells also showed a dilated and fragmented pattern. Mechanistically, COLEC10 overexpression increases GRP78 occupancy through direct binding by the C-terminal carbohydrate recognition domain in the ER, which released and activated the ER stress transducers protein kinase RNA-like ER kinase and phosphorylated inositol-requiring protein 1α, triggering the unfolded protein response activity. COLEC10-overexpressing HCC cells generated a relatively high reactive oxygen species level and switched to apoptotic cell death under sorafenib-treated conditions. Our study provides the first novel view that COLEC10 inhibits HCC progression by regulating GRP78-mediated ER stress signaling and may serve as a promising therapeutic and prognostic biomarker.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Endoplasmic Reticulum Chaperone BiP , Liver Neoplasms/metabolism , Endoplasmic Reticulum Stress , Apoptosis , RNA , Protein Kinases , Collectins
7.
Exp Hematol Oncol ; 11(1): 71, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36243813

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma, and about 10% of DLBCL cases primarily occur in the gastrointestinal tract. Previous reports have revealed that primary gastrointestinal-DLBCL (pGI-DLBCL) harbors different genetic mutations from other nodal or extranodal DLBCL. However, the exonic mutation profile of pGI-DLBCL has not been fully addressed. METHODS: We performed whole-exome sequencing of matched tumor tissues and blood samples from 53 pGI-DLBCL patients. The exonic mutation profiles were screened, and the correlations between genetic mutations and clinicopathological characteristics were analyzed. RESULTS: A total of 6,588 protein-altering events were found and the five most frequent mutated genes in our pGI-DLBCL cohort were IGLL5 (47%), TP53 (42%), BTG2 (28%), P2RY8 (26%) and PCLO (23%). Compared to the common DLBCL, significantly less or absence of MYD88 (0%), EZH2 (0%), BCL2 (2%) or CD79B (8%) mutations were identified in pGI-DLBCL. The recurrent potential driver genes were mainly enriched in pathways related to signal transduction, infectious disease and immune regulation. In addition, HBV infection had an impact on the mutational signature in pGI-DLBCL, as positive HBsAg was significantly associated with the TP53 and LRP1B mutations, two established tumor suppressor genes in many human cancers. Moreover, IGLL5 and LRP1B mutations were significantly correlated with patient overall survival and could serve as two novel prognostic biomarkers in pGI-DLBCL. CONCLUSIONS: Our study provides a comprehensive view of the exonic mutation profile of the largest pGI-DLBCL cohort to date. The results could facilitate the clinical development of novel therapeutic and prognostic biomarkers for pGI-DLBCL.

8.
Oncogene ; 41(22): 3104-3117, 2022 05.
Article in English | MEDLINE | ID: mdl-35468939

ABSTRACT

Kelch superfamily involves a variety of proteins containing multiple kelch motif and is well characterized as substrate adaptors for CUL3 E3 ligases, which play critical roles in carcinogenesis. However, the role of kelch proteins in lung cancer remains largely unknown. In this study, the non-small cell lung cancer (NSCLC) patients with higher expression of a kelch protein, kelch domain containing 3 (KLHDC3), showed worse overall survival. KLHDC3 deficiency affected NSCLC cell lines proliferation in vitro and in vivo. Further study indicated that KLHDC3 mediated CUL2 E3 ligase and tumor suppressor p14ARF interaction, facilitating the N-terminal ubiquitylation and subsequent degradation of p14ARF. Interestingly, Gefitinib-resistant NSCLC cell lines displayed higher KLHDC3 protein levels. Gefitinib and Osimertinib medications were capable of upregulating KLHDC3 expression to promote p14ARF degradation in the NSCLC cell lines. KLHDC3 shortage significantly increased the sensitivity of lung cancer cells to epidermal growth factor receptor (EGFR)-targeted drugs, providing an alternative explanation for the development of Gefitinib and Osimertinib resistance in NSCLC therapy. Our works suggest that CRL2KLHDC3 could be a valuable target to regulate the abundance of p14ARF and postpone the occurrence of EGFR-targeted drugs resistance.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gefitinib/pharmacology , Gefitinib/therapeutic use , Humans , Kelch Repeat , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Tumor Suppressor Protein p14ARF/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
Oxid Med Cell Longev ; 2022: 5322929, 2022.
Article in English | MEDLINE | ID: mdl-35340220

ABSTRACT

Background: Anillin (ANLN), a ubiquitously expressed actin-binding protein, plays a critical tumor-promoting role in cell growth, migration, and cytokinesis. Numerous studies have suggested that ANLN is upregulated in many cancer types, as well as significantly associated with patient prognosis and malignant cancer characteristics. Herein, we performed an integrated pan-cancer analysis of ANLN and highlighted its underlying mechanism, which may benefit further exploration of the potential therapeutic options for cancer. Methods: ANLN expression data were extracted from online databases, including TCGA, GTEx, and CCLE databases. The TIMER database was used to study the association between ANLN expression with immune checkpoint genes and immunocyte infiltration. The ScanNeo pipeline was adopted for neoantigen discovery. KEGG analysis and the STRING tool were used to elucidate the potential mechanism of ANLN in cancer development. Results: ANLN is abnormally overexpressed in almost all cancer tissues compared with normal tissues. The high-ANLN expression level was positively associated with various malignant characteristics, suggesting its potential role in the immune microenvironment and poor prognosis. In addition, ANLN expression was correlated with the number of neoantigens and different phosphorylation pattern in various cancer types, revealing a functional role of genetic mutation accumulation and high phosphorylation in ANLN-mediated oncogenesis. Moreover, we found that ANLN was an important regulatory factor participating in many signaling events, especially the cell cycle and nucleocytoplasmic transport pathways. Conclusions: ANLN expression is generally overexpressed in various types of cancers, and it may have an important influence on tumor progression and development. ANLN expression is significantly associated with the immune checkpoint biomarkers and tumor immunity. Together, these findings suggest that ANLN may be a predictive marker for patient prognosis across cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , Microfilament Proteins , Cell Transformation, Neoplastic/metabolism , Contractile Proteins , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Prognosis , Tumor Microenvironment
10.
Cancers (Basel) ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36612106

ABSTRACT

With the aim of enhancing the understanding of NEIL3 in prognosis prediction and therapy administration, we conducted a pan-cancer landscape analysis on NEIL3. The mutation characteristics, survival patterns, and immune features of NEIL3 across cancers were analyzed. Western blotting, qPCR, and immunohistochemistry were conducted to validate the bioinformatics results. The correlation between NEIL3 and chemotherapeutic drugs, as well as immunotherapies, was estimated. NEIL3 was identified as an oncogene with prognostic value in predicting clinical outcomes in multiple cancers. Combined with the neoantigen, tumor mutational burden (TMB), and microsatellite instability (MSI) results, a strong relationship between NEIL3 and the TME was observed. NEIL3 was demonstrated to be closely associated with multiple immune parameters, including infiltrating immunocytes and pro-inflammatory chemokines, which was verified by experiments. More importantly, patients with a higher expression of NEIL3 were revealed to be more sensitive to chemotherapeutic regimens and immune checkpoint inhibitors in selected cancers, implying that NEIL3 may be an indicator for therapeutic administration. Our study indicated NEIL3 has a strong association with the immune microenvironment and phenotypic changes in certain types of cancers, which facilitated the improved understanding of NEIL3 across cancers and highlighted the potential for clinical application of NEIL3 in precision medical stratification.

11.
Am J Cancer Res ; 11(6): 2369-2385, 2021.
Article in English | MEDLINE | ID: mdl-34249405

ABSTRACT

A long noncoding RNA (lncRNA) transcript is generally more than 200 nucleotides in length and rarely codes for any protein. Currently, many lncRNAs have been identified among mammalian genomes, and their known functions are associated with various physiological activities or pathological processes. Some lncRNAs are dysregulated in a variety of malignant tumors, while increasing evidence indicates that abnormal expression can contribute to the regulation of immune cells in tumors and to shaping the immune response. More specifically, lncRNAs participate in regulating the differentiation of immune cells, also known as myeloid and lymphoid cells, as well as recruiting various immunosuppressive factors to influence the tumor microenvironment, thereby promoting tumor cell immune escape. However, we still know very little about the specific mechanism of lncRNAs in immune escape of cancer. Nonetheless, although unprecedented achievements have allowed the development of a new generation of anti-tumor immune therapies to be applied in clinical trials, the drug resistance caused by immune escape has become a major clinical challenge. The focus of this review is to describe the relationship among lncRNAs, immune cells, and tumor immune escape, in order to identify novel diagnostic and therapeutic targets in human cancers.

12.
Mol Med Rep ; 23(6)2021 06.
Article in English | MEDLINE | ID: mdl-33880590

ABSTRACT

Snail family transcriptional repressor 1 (SNAIL1) is a master inducer of the epithelial­to­mesenchymal transition (EMT) process, contributing to tumor metastasis and recurrence. Our previous study reported that G2 and S phase­expressed­1 (GTSE1) served a role in regulating SNAIL1 expression in hepatocellular carcinoma (HCC). However, the underlying mechanism remains unknown. Therefore, the present study aimed to reveal the regulatory mechanism of GTSE1 on SNAIL1 expression using in vitro assays performed in HCC cell models. It was demonstrated that endogenous SNAIL1 expression was downregulated and upregulated by GTSE1 overexpression or small interfering RNA­mediated knockdown, respectively. Via cycloheximide chase experiments, it was identified that GTSE1 overexpression increased the protein turnover of SNAIL1, while knockdown of GTSE1 reduced its degradation rate. Furthermore, it was demonstrated that GTSE1 overexpression induced the cytoplasmic expression of SNAIL1 using immunofluorescence and subcellular fractionation methods. The nuclear export inhibitor leptomycin B was able to decrease the cytoplasmic retention of SNAIL1 caused by GTSE1 overexpression. In addition, TGF­ßI treatment increased both the mRNA and protein expression levels of GTSE1, and decreased the protein expression level of SNAIL1 without affecting its mRNA transcription in Huh7 cells. It was also found that TGF­ß signaling could upregulate the transcription of GTSE1 expression by transactivating the Smad binding elements in the GTSE1 promoter. Moreover, the TGF­ßI­induced decrease in SNAIL1 protein expression was GTSE1­dependent in Huh7 cells. In conclusion, the current study provides a novel mechanism via which GTSE1 affects the stability of SNAIL1 by regulating its subcellular localization in HCC cells.


Subject(s)
Active Transport, Cell Nucleus/physiology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Microtubule-Associated Proteins/metabolism , Snail Family Transcription Factors/metabolism , Active Transport, Cell Nucleus/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Microtubule-Associated Proteins/genetics , Neoplasm Recurrence, Local/genetics , Promoter Regions, Genetic , Proteasome Endopeptidase Complex , Signal Transduction , Snail Family Transcription Factors/genetics , Up-Regulation
13.
Cell Death Dis ; 11(7): 522, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651355

ABSTRACT

Growing evidences illustrated that long non-coding RNAs (lncRNAs) exhibited widespread effects on the progression of human cancers via various mechanisms. Long intergenic non-protein-coding RNA 01446 (LINC01446), a 3484-bp ncRNA, is known to locate at chromosome 7p12.1. However, its biological functions and specific action mechanism in gastric cancer (GC) are still unclear. In our study, LINC01446 was proved to be markedly upregulated in GC tissues relative to the normal tissues, and positively correlated with the poor survival of GC patients. The multivariate Cox regression model showed that LINC01446 functioned as an independent prognostic factor for the survival of GC patients. Functionally, LINC01446 facilitated the proliferation and metastasis of GC cells. Moreover, RNA-seq analysis demonstrated that LINC01446 knockdown primarily regulated the genes relating to the growth and migration of GC. Mechanistically, LINC01446 could widely interact with histone lysine-specific demethylase LSD1 and recruit LSD1 to the Ras-related dexamethasone-induced 1 (RASD1) promoter, thereby suppressing RASD1 transcription. Overall, these findings suggest that LINC01446/LSD1/RASD1 regulatory axis may provide bona fide targets for anti-GC therapies.


Subject(s)
Histone Demethylases/metabolism , RNA, Long Noncoding/genetics , Stomach Neoplasms/metabolism , Cell Proliferation/physiology , Disease Progression , Female , Humans , Male , Middle Aged , Neoplasm Metastasis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
14.
Sci Total Environ ; 741: 140423, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32615432

ABSTRACT

With the increasing researches on the role of gut microbiota in human health and disease, appropriate storage method of fecal samples at ambient temperature would conveniently guarantee the precise and reliable microbiota results. Nevertheless, less choice of stabilizer that is cost-efficient and feasible to be used in longer preservation period obstructed the large-scale metagenomics studies. Here, we evaluated the efficacy of a guanidine isothiocyanate-based reagent method EffcGut and compared it with the other already used storage method by means of 16S rRNA gene sequencing technology. We found that guanidine isothiocyanate-based reagent method at ambient temperature was not inferior to OMNIgene·GUT OM-200 and it could retain the similar bacterial community as that of -80 °C within 24 weeks. Furthermore, bacterial diversity and community structure difference were compared among different sample fraction (supernatant, suspension and precipitate) preserved in EffcGut and -80 °C. We found that supernatant under the preservation of EffcGut retained the similar community structure and composition as that of the low temperature preservation method.


Subject(s)
Microbiota , Specimen Handling , Cost-Benefit Analysis , Feces , Humans , RNA, Ribosomal, 16S , Temperature
15.
BMC Infect Dis ; 20(1): 509, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32664850

ABSTRACT

BACKGROUND: Complete clearance of intracellular viruses depends on effector cells of innate and adaptive immune systems. This study aimed to identify the relationships among antiviral cytokines produced by natural killer (NK) and T cells and clinical-virological characteristics in untreated chronic hepatitis B (CHB) patients. METHODS: We measured antiviral cytokines interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) produced by T, NK and natural killer T (NKT) cells, respectively, in a cohort with chronic hepatitis B virus (HBV) infection (CHB). We also correlated these cytokines with clinical-virological characteristics using a linear regression model. RESULTS: levels of IFN-γ+ and TNF-α+ CD4+ and CD8+ T cells were significantly higher in immune active (IA) phase than in other phases. Immune tolerant (IT) patients showed the lowest expression of IFN-γ by NK and NKT cells, and TNF-α by NK cells. IFN-γ+, TNF-α+ and IL-2+ CD4+ and CD8+ T cells frequencies were similar between IA and gray zone (GZ) phases. Principal component analysis based on cytokines confirmed that most IT patients significantly differed from inactive carriers (IC) and IA patients, while GZ patients were widely scattered. Multivariate analysis showed both T and NK cells producing IFN-γ and TNF-α, but not IL-2, had significant association with serum alanine aminotransferase (ALT). Moreover, IFN-γ+ NKT cells were associated with HBV DNA, while IFN-γ+ CD4+ and CD8+ T cells were correlated with age. CONCLUSION: HBV clinical phases are characterized by distinct cytokine signatures, which showed relationship to viral features in these untreated CHB patients.


Subject(s)
Adaptive Immunity , Cytokines/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/immunology , Immunity, Innate , Adult , Alanine Transaminase/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cohort Studies , DNA, Viral/blood , Female , Hepatitis B Surface Antigens/blood , Hepatitis B, Chronic/virology , Humans , Killer Cells, Natural/immunology , Male , Natural Killer T-Cells/immunology , Young Adult
16.
Liver Int ; 40(11): 2672-2684, 2020 11.
Article in English | MEDLINE | ID: mdl-32564486

ABSTRACT

BACKGROUND & AIMS: T-cell receptor (TCR) repertoire is ambiguously changed in chronic hepatitis B (CHB) patients during antivirus therapy. We tried to assess TCR repertoire dynamics and its clinical significance upon HBeAg seroconversion in CHB patients. METHODS: Twenty CHB patients undergoing 1-year entecavir (ETV) treatment were enrolled, including 10 complete response (CR) vs 10 non-complete response (NCR) patients based on HBeAg seroconversion at week 48. The TCRß complementarity-determining region 3 (CDR3) of peripheral CD4+ and CD8+ T cells at weeks 0, 12 and 48 was analyzed by unbiased high-throughput sequencing. The TCR repertoire profiles and their correlations with serological parameters were analyzed. RESULTS: The diversity of TCRß repertoires was decreasing in CR patients but increasing in NCR patients. The distribution pattern of TCR repertoires stratified according to clonotype frequencies changed in the opposite direction between CR and NCR patients. Narrow amounts of newly appearing clonotypes in CR patients experienced a more intensive and robust expansion and this phenomenon could occur as early as week 12 for the CD4+ subset but later at week 48 for the CD8+ subset. There existed some CR-exclusive clonotypes with a relatively low but increasing frequency at week 48. The number of unique TCRß clonotypes was positively correlated with the ALT or HBV DNA level in CR patients but showed no or negative correlation in NCR patients. CONCLUSION: Distinct TCR profiles contribute to predicting HBeAg seroconversion in CHB patients during ETV treatment and certain TCRß CDR3 motif may be utilized for CHB immunotherapy in the future.


Subject(s)
Hepatitis B e Antigens , Hepatitis B, Chronic , Antiviral Agents/therapeutic use , CD8-Positive T-Lymphocytes , Complementarity Determining Regions , DNA, Viral , Guanine/analogs & derivatives , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Humans , Seroconversion , Treatment Outcome
17.
Mol Ther Nucleic Acids ; 19: 1164-1175, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32059342

ABSTRACT

Non-protein-coding functional elements in the human genome in the postgenomic biology field have been drawing great attention in recent years. Thousands of long non-coding RNAs (lncRNAs) have been found to be expressed in various tumors. Yet only a small proportion of these lncRNAs have been well characterized. We have demonstrated that LINC00460 could affect cell proliferation through epigenetic regulation of KLF2 and CUL4A in human colorectal cancer. However, the clinical significance and biological role of LINC00460 in gastric cancer (GC) remain largely unknown. In this research, we discovered that LINC00460 is remarkably upregulated in GC tissues compared to the non-tumor tissues. Additionally, LINC00460 served as an independent prognostic marker in GC. Functionally, proliferation of GC cells could be regulated by LINC00460 both in vitro and in vivo. RNA sequencing (RNA-seq) analysis for the whole transcriptome indicated that LINC00460 may serve as a key regulatory factor in the tumorigenesis of GC. What's more, the biological function of LINC00460 was mediated, to certain extent, by the direct interaction with enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins. Further analyses indicated that LINC00460 promoted GC proliferation at least partly through the downregulation of tumor suppressor-gene Cyclin G2 (CCNG2), which is mediated by EZH2 and LSD1. In conclusion, our results suggested that LINC00460 acted as an oncogene in GC to inhibit the expression of CCNG2 at least partly by binding with EZH2 and LSD1. Our study could provide additional insights into the development of novel target therapeutic methods for GC.

18.
J Cancer ; 11(1): 121-131, 2020.
Article in English | MEDLINE | ID: mdl-31892979

ABSTRACT

Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) are a set of enzymes involved in the hydroxylation of lysine and stabilization of collagen by crosslinks. Previous studies have highlighted that overexpressing PLOD genes were related to the progression, migration and progression of different human cancers. However, the diverse expression patterns and prognostic values of PLOD genes remain to be elucidated in gastric cancer (GC). In this study, we mined the expression and survival data in GC patients through ONCOMINE, UALCAN and Kaplan-Meier Plotter database. STRING portal couple with DAVID was used to establish a functional protein interaction network of PLOD family genes and analyze the GO and KEGG enriched pathways. Differential gene expression correlated with PLOD family genes was identified with LinkedOmics. We found that PLOD1, 2 and 3 were up-regulated in GC patients compared with normal tissues. High expression levels of PLOD1 and PLOD3 were associated with shorter overall survival (OS), first progression (FP) and post progression survival (PPS) while high expression level of PLOD2 was only associated with shorter FP in all GC patients. Specifically, only high PLOD2 expression had significant correlation with shorter OS, FP and PPS in the diffuse type GC patients. Furthermore, combinatorial use of expressions of all PLOD genes was a superior prognostic indicator for GC patients. Pathway analysis confirmed that PLOD family genes mainly participate in regulating the collagen metabolism and extracellular matrix constitution, and the cellular adaptor protein SHC1, which helps to transduce an extracellular signal into an intracellular signal, could be the regulatory module mediating PLOD's effect on GC. Therefore, we propose that individual PLOD genes or PLOD family genes as a whole could be potential prognostic biomarkers for GC.

19.
Aging (Albany NY) ; 12(24): 26063-26079, 2020 12 26.
Article in English | MEDLINE | ID: mdl-33401245

ABSTRACT

We generated an Immuno-Clinic score (ICS) model to evaluate T cell immunity based on the clustering of antiviral cytokines and inhibitory molecules in 229 naïve chronic hepatitis B (CHB) patients. 126 patients receiving antiviral therapy were used to validate the model for predicting antiviral therapy effectiveness. Through receiver-operator characteristic curve analysis, the area under the curve, sensitivity, and specificity of the ICS model were 0.801 (95%CI 0.703-0.900), 0.727, and 0.722, respectively. The cut-off value was 0.442. Re-evaluation of T cell immunity in different phases of CHB showed that patients in the immune tolerant phase had the lowest percentage of ICS-high (15%), while patients in the inactive carrier phase had the highest percentage of ICS-high (92%). Patients in the immune active and gray zone phases had 17% and 56% ICS-high, respectively. Elevation of ICS as early as four weeks after treatment could predict the effectiveness of hepatitis B virus (HBV) DNA loss and normalization of alanine aminotransferase, while eight weeks after treatment could predict HBV surface antigen decline. Thus, this ICS model helps clinicians choose an optimal time for initiating antiviral therapy and predicting its efficacy.


Subject(s)
Antiviral Agents/therapeutic use , Cytokines/immunology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , T-Lymphocytes/immunology , Adult , Antigens, CD/immunology , Area Under Curve , CTLA-4 Antigen/immunology , Clinical Decision Rules , DNA, Viral/blood , Early Medical Intervention , Female , Hepatitis A Virus Cellular Receptor 2/immunology , Hepatitis B Surface Antigens/blood , Hepatitis B, Chronic/blood , Humans , Immunophenotyping , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , Programmed Cell Death 1 Receptor/immunology , ROC Curve , Receptors, Immunologic/immunology , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology , Lymphocyte Activation Gene 3 Protein
20.
J Med Virol ; 92(3): 317-328, 2020 03.
Article in English | MEDLINE | ID: mdl-31642539

ABSTRACT

BACKGROUND AND AIM: Hepatitis B virus (HBV) load and antigens are related to the innate and adaptive immunity of chronic hepatitis B (CHB) patients. As a new HBV biomarker, the role of pregenomic RNA (pgRNA) in host immunity is not known. This study aimed to identify the relationship between serum HBV pgRNA and host immunity in CHB patients. METHODS: Two hundred twenty-five treatment-naïve CHB patients were enrolled. Serum cytokines were measured by cytokine antibody array (Luminex multiplex platform). Th1 (T-helper cell, Th) and Th2 cells were tested by flow cytometry. Serum HBV pgRNA was detected by a reverse transcription-polymerase chain reaction. RESULTS: Serum HBV pgRNA was significantly different among patients in different disease phases and significantly associated with both HBV antigens and antibodies. Serum HBV pgRNA was positively correlated with the HBsAg level (P < .001) and the presence of HBeAg (P < .001). Patients with higher HBcAb levels showed lower serum HBV pgRNA levels (P = .003). Notably, HBsAb positivity was associated with higher levels of serum HBV pgRNA in HBeAg(-) patients (P = .049). Serum HBV pgRNA was positively associated with ALT level, Th2 cell frequency, and related cytokine sCD30 (P < .001, P < .001, and P = .003, respectively), but negatively associated with Th1-related cytokine interleukin (IL)-12P70 and cytotoxic lymphocytes (CTLs) (P = .017 and P < .001, respectively). CONCLUSION: Our study confirmed the relationship between serum HBV pgRNA and host immunity. The results demonstrated that serum HBV pgRNA is positively correlated with Th2 immunity but negatively correlated with Th1 immunity, indicating that it might have a relationship with HBV antigen conversion and CTL immunodeficiency in CHB patients.


Subject(s)
Hepatitis B, Chronic/immunology , RNA, Viral/blood , RNA, Viral/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Adult , China , Cohort Studies , Cytokines/blood , Cytokines/immunology , Female , Hepatitis B virus , Hepatitis B, Chronic/virology , Humans , Male , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...