Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2400: 187-195, 2022.
Article in English | MEDLINE | ID: mdl-34905202

ABSTRACT

Availability of the methods for long-term virus preservation facilitates easy acquirement of viruses, which are needed in many basic and applied virological studies. Cryopreservation is currently considered an ideal means for long-term preservation of plant germplasm. Recent studies have shown that cryopreservation provided an efficient and reliable method for long-term preservation of plant viruses. Here, we describe the detailed procedures of droplet vitrification for long-term preservation of apple stem grooving virus (ASGV), which represents a type of viruses that can invade meristematic cells of the shoot tips, and potato leafroll virus (PLRV), which is a phloem-limited virus that does not infect the apical meristem. Shoot tip cryopreservation provides an advantageous strategy for the long-term preservation of plant viruses.


Subject(s)
Cryopreservation , Cryoprotective Agents , Malus , Plant Shoots , Vitrification
2.
Arch Virol ; 166(12): 3461-3465, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34581864

ABSTRACT

Here, we describe the full-length genome sequence of a novel ourmia-like mycovirus, tentatively named "Botryosphaeria dothidea ourmia-like virus 1" (BdOLV1), isolated from the phytopathogenic fungus Botryosphaeria dothidea strain 8A, associated with apple ring rot in Shanxi province, China. The complete BdOLV1 genome is comprised of a 2797-nucleotide positive-sense (+) single-stranded RNA (ssRNA) with a single open reading frame (ORF). The ORF putatively encodes a 642-amino-acid polypeptide with conserved RNA-dependent RNA polymerase (RdRp) motifs related to those of viruses of the family Botourmiaviridae. Phylogenetic analysis based on RdRp amino acid sequences showed that BdOLV1 is grouped with unclassified oomycete-infecting viruses closely related to members of the genus Botoulivirus in the family Botourmiaviridae. This is the first report of a novel (+)ssRNA virus in B. dothidea related to members of the genus Botoulivirus in the family Botourmiaviridae.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , Ascomycota/genetics , Fungal Viruses/genetics , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , RNA Viruses/genetics , RNA, Viral/genetics , Viral Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 117(7): 3779-3788, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015104

ABSTRACT

Plants and fungi are closely associated through parasitic or symbiotic relationships in which bidirectional exchanges of cellular contents occur. Recently, a plant virus was shown to be transmitted from a plant to a fungus, but it is unknown whether fungal viruses can also cross host barriers and spread to plants. In this study, we investigated the infectivity of Cryphonectria hypovirus 1 (CHV1, family Hypoviridae), a capsidless, positive-sense (+), single-stranded RNA (ssRNA) fungal virus in a model plant, Nicotiana tabacum CHV1 replicated in mechanically inoculated leaves but did not spread systemically, but coinoculation with an unrelated plant (+)ssRNA virus, tobacco mosaic virus (TMV, family Virgaviridae), or other plant RNA viruses, enabled CHV1 to systemically infect the plant. Likewise, CHV1 systemically infected transgenic plants expressing the TMV movement protein, and coinfection with TMV further enhanced CHV1 accumulation in these plants. Conversely, CHV1 infection increased TMV accumulation when TMV was introduced into a plant pathogenic fungus, Fusarium graminearum In the in planta F. graminearum inoculation experiment, we demonstrated that TMV infection of either the plant or the fungus enabled the horizontal transfer of CHV1 from the fungus to the plant, whereas CHV1 infection enhanced fungal acquisition of TMV. Our results demonstrate two-way facilitative interactions between the plant and fungal viruses that promote cross-kingdom virus infections and suggest the presence of plant-fungal-mediated routes for dissemination of fungal and plant viruses in nature.


Subject(s)
Fungal Viruses/physiology , Fusarium/virology , Nicotiana/virology , Plant Diseases/virology , Plant Viruses/physiology , Tobacco Mosaic Virus/physiology , Fusarium/physiology
5.
Proc Natl Acad Sci U S A ; 116(26): 13042-13050, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31182602

ABSTRACT

Viroids are pathogenic agents that have a small, circular noncoding RNA genome. They have been found only in plant species; therefore, their infectivity and pathogenicity in other organisms remain largely unexplored. In this study, we investigate whether plant viroids can replicate and induce symptoms in filamentous fungi. Seven plant viroids representing viroid groups that replicate in either the nucleus or chloroplast of plant cells were inoculated to three plant pathogenic fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum By transfection of fungal spheroplasts with viroid RNA transcripts, each of the three, hop stunt viroid (HSVd), iresine 1 viroid, and avocado sunblotch viroid, can stably replicate in at least one of those fungi. The viroids are horizontally transmitted through hyphal anastomosis and vertically through conidia. HSVd infection severely debilitates the growth of V. mali but not that of the other two fungi, while in F. graminearum and C. parasitica, with deletion of dicer-like genes, the primary components of the RNA-silencing pathway, HSVd accumulation increases. We further demonstrate that HSVd can be bidirectionally transferred between F. graminearum and plants during infection. The viroids also efficiently infect fungi and induce disease symptoms when the viroid RNAs are exogenously applied to the fungal mycelia. These findings enhance our understanding of viroid replication, host range, and pathogenicity, and of their potential spread to other organisms in nature.


Subject(s)
Disease Transmission, Infectious , Fungi/virology , Plant Diseases/microbiology , Plant Viruses/pathogenicity , Viroids/pathogenicity , Fungi/growth & development , Fungi/pathogenicity , Mycelium/virology , RNA, Viral/metabolism , Viroids/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...