Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39039819

ABSTRACT

Objectives: This study aimed to identify the optimal protein construction for designing a multi-epitope vaccine with both prophylactic and therapeutic effects against cervical cancer, utilizing an immunoinformatics approach. The construction process involved using capsid epitopes L1 and L2, as well as oncoproteins E5, E6, and E7 from human papillomavirus (HPV) types 16 and 18. Methods: An experimental in silico analysis with an immunoinformatics approach was used to develop 2 multi-epitope vaccine constructs (A and B). Further analysis was then conducted to compare the constructs and select the one with the highest potential against cervical cancer. Results: This study produced 2 antigenic, non-allergenic, and nontoxic multi-epitope vaccine constructs (A and B), which exhibited the ideal physicochemical properties for a vaccine. Further analysis revealed that construct B effectively induced both cellular and humoral immune responses. Conclusion: The multi-epitope vaccine construct B for HPV 16 and 18, designed for both prophylactic and therapeutic purposes, met the development criteria for a cervical cancer vaccine. However, these findings need to be validated through in vitro and in vivo experiments.

2.
Iran J Med Sci ; 49(3): 176-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38584647

ABSTRACT

Background: The World Health Organization has declared Omicron as the fifth variant of concern with more than 50 mutations, particularly in the spike protein. Given increased viral infectivity due to mutations, worldwide genomic surveillance and detection of severe acute respiratory syndrome 2 (SARS-CoV-2) is essential. The present study aimed to track Omicron lineage BA.2.40 in West Kalimantan, Indonesia. Methods: In May-August 2022, nasopharyngeal swab samples (n=3,642) were collected from international travelers to West Kalimantan (active surveillance), and patients hospitalized due to SARS-CoV-2 infection (baseline surveillance). The samples were tested for Omicron lineages based on ORF1ab, N, and HV69-70del genes, followed by whole-genome sequencing. The sequences were then identified using two genomic databases, aligned against the reference genome (Wuhan/Hu-1/2019), and then compared with BA.2.40 lineage detected across the world. Phylogenetic analysis between the samples and other SARS-CoV-2 isolates was performed using molecular evolutionary genetics analysis software. Results: Based on the genomic databases, 10 isolates were identified as BA.2.40. All samples tested positive for the ORF1ab and N genes, but negative for the HV69-70del gene, which is a marker to detect the Omicron variant. Phylogenetic analysis showed the isolates were closely related to an isolate from Malaysia, an area dominated by BA.2.40. Conclusion: Omicron lineage BA.2.40 has no HV69-70 deletion in the spike protein, a marker used to screen for the Omicron variant. BA.2.40 showed a high similarity to an isolate from Malaysia and was detected only during certain periods, indicating the effect of internationally imported cases.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Indonesia/epidemiology , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Biological Evolution , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...