Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Aesthetic Plast Surg ; 48(3): 501-509, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200124

ABSTRACT

BACKGROUND: Autologous adipose tissue often experiences ischemia and hypoxia after transplantation, leading to low retention rates and unstable operative impacts due to necrotic absorption. Platelet-rich plasma (PRP) can enhance fat regeneration and increase the fat retention rate after transplantation. However, the quick release of growth factors (GFs) in PRP decreases therapeutic efficiency. This study aimed to achieve a slow release of PRP to promote fat retention. METHODS: We prepared a dual-network hydrogel (DN gel) based on FDA-approved PRP and sodium alginate (SA) through a simple "one-step" activation process. In vivo study, adipose tissue with saline (control group), SA gel (SA gel group), PRP gel (PRP gel group), and DN gel (DN gel group) was injected subcutaneously into the dorsum of nude mice. At 4 and 12 weeks after injection, tissues were assessed for volume and weight. Hematoxylin and eosin staining (HE) and immunofluorescence staining were performed for histological assessment. RESULTS: DN gel exhibits long-lasting growth factor effects, surpassing conventional clinical PRP gel regarding vascularization potential. In fat transplantation experiments, DN gel demonstrated improved vascularization of transplanted fat and increased retention rates, showing promise for clinical applications. CONCLUSIONS: DN gel-assisted lipofilling can significantly improve the retention rate and quality of transplanted fat. DN gel-assisted lipofilling, which is considered convenient, is a promising technique to improve neovascularization and fat survival. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Subject(s)
Adipose Tissue , Platelet-Rich Plasma , Animals , Mice , Mice, Nude , Adipose Tissue/transplantation , Injections
2.
ACS Sens ; 9(1): 171-181, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38159288

ABSTRACT

With the rapid development of the concept of the Internet of Things (IoT), gas sensors with the function of simulating the human sense of smell became irreplaceable as a key element. Among them, ammonia (NH3) sensors played an important role in respiration tests, environmental monitoring, safety, and other fields. However, the fabrication of the high-performance device with high stability and resistance to mechanical damages was still a challenge. In this work, polyurethane (PU) with excellent self-healing ability was applied as the substrate, and the sensor was designed from new sensitive material design and device structure optimization, through applying the organic molecule with groups which could absorb NH3 and the laminated structure to shorten the electronic transmission path to achieve a low resistance state and favorable sensing properties. Accordingly, a room temperature flexible NH3 sensor based on 6,6',6″-(nitrilotris(benzene-4,1-diyl))tris(5-phenylpyrazine-2,3-dicarbonitrile) (TPA-3DCNPZ) was successfully developed. The device could self-heal by means of a thermal evaporation assisted method. It exhibited a detection limit of 1 ppm at 98% relative humidity (RH), as well as great stability, selectivity, bending flexibility, and self-healing properties. The improved NH3 sensing performance under high RH was further investigated by complex impedance plots (CIPs) and density functional theory (DFT), attributing to the enhanced adsorption of NH3. The TPA-3DCNPZ based NH3 sensors proved to have great potential for application on simulated exhaled breath to determine the severity of kidney diseases and the progress of treatment. This work also provided new ideas for the construction of high-performance room temperature NH3 sensors.


Subject(s)
Smart Materials , Humans , Benzene , Temperature , Adsorption , Ammonia
3.
Environ Sci Pollut Res Int ; 31(3): 4881-4896, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108986

ABSTRACT

ZnO/reduced graphite oxide (rGO) composites were simultaneously prepared by the thermal reduction of graphite oxide (GO) and the decomposition of Zn(OH)2. The samples were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence, and DRS. Results indicate that Zn(OH)2 was heated and decomposed into ZnO at a low temperature (200 ℃), while GO was reduced to graphene. The synthesized ZnO particles were small and loaded on graphene layers. The ZnO/rGO photocatalysts exhibited excellent photocatalytic activity against methylene blue (MB) under simulated sunlight irradiation. The ZnO/50% rGO photocatalyst showed the best MB photodegradation rate of up to 99.7% within 3 min. Synchronous reaction provided an efficient, simple, and fast preparation method for ZnO/rGO composites, with an excellent solar photocatalytic degradation ability.


Subject(s)
Graphite , Zinc Oxide , Oxides , Catalysis , Methylene Blue , Zinc
4.
Front Endocrinol (Lausanne) ; 14: 1180732, 2023.
Article in English | MEDLINE | ID: mdl-37229449

ABSTRACT

Background: Cutaneous melanoma (CM) is one of the malignant tumors with a relative high lethality. Necroptosis is a novel programmed cell death that participates in anti-tumor immunity and tumor prognosis. Necroptosis has been found to play an important role in tumors like CM. However, the necroptosis-associated lncRNAs' potential prognostic value in CM has not been identified. Methods: The RNA sequencing data collected from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) was utilized to identify differentially expressed genes in CM. By using the univariate Cox regression analysis and machine learning LASSO algorithm, a prognostic risk model had been built depending on 5 necroptosis-associated lncRNAs and was verified by internal validation. The performance of this prognostic model was assessed by the receiver operating characteristic curves. A nomogram was constructed and verified by calibration. Furthermore, we also performed sub-group K-M analysis to explore the 5 lncRNAs' expression in different clinical stages. Function enrichment had been analyzed by GSEA and ssGSEA. In addition, qRT-PCR was performed to verify the five lncRNAs' expression level in CM cell line (A2058 and A375) and normal keratinocyte cell line (HaCaT). Results: We constructed a prognostic model based on five necroptosis-associated lncRNAs (AC245041.1, LINC00665, AC018553.1, LINC01871, and AC107464.3) and divided patients into high-risk group and low-risk group depending on risk scores. A predictive nomogram had been built to be a prognostic indicator to clinical factors. Functional enrichment analysis showed that immune functions had more relationship and immune checkpoints were more activated in low-risk group than that in high-risk group. Thus, the low-risk group would have a more sensitive response to immunotherapy. Conclusion: This risk score signature could be used to divide CM patients into low- and high-risk groups, and facilitate treatment strategy decision making that immunotherapy is more suitable for those in low-risk group, providing a new sight for CM prognostic evaluation.


Subject(s)
Melanoma , RNA, Long Noncoding , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/therapy , Skin Neoplasms/genetics , Skin Neoplasms/therapy , RNA, Long Noncoding/genetics , Prognosis , Immunotherapy , Necrosis , Melanoma, Cutaneous Malignant
5.
Nat Commun ; 14(1): 2564, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142564

ABSTRACT

Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 106 s-1, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off.

6.
Angew Chem Int Ed Engl ; 62(19): e202301930, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36898967

ABSTRACT

Advanced multiple resonance induced thermally activated delayed fluorescence (MR-TADF) emitters have emerged as a privileged motif for applications in organic light-emitting diodes (OLEDs), because they furnish highly tunable TADF characteristics and high color purity emission. Herein, based on the unique nitrogen-atom embedding molecular engineering (NEME) strategy, a series of compounds BN-TP-Nx (x=1, 2, 3, 4) have been customized. The nitrogen-atom anchored at different position of triphenylene hexagonal lattice entails varying degrees of perturbation to the electronic structure. The newly-constructed emitters have demonstrated the precise regulation of emission maxima of MR-TADF emitters to meet the actual industrial demand, and further enormously enriched the MR-TADF molecular reservoir. The BN-TP-N3-based OLED exhibits ultrapure green emission, with peak of 524 nm, full-width at half-maximum (FWHM) of 33 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.71), and maximum external quantum efficiency (EQE) of 37.3 %.

7.
Angew Chem Int Ed Engl ; 61(23): e202200337, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35302704

ABSTRACT

Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-π-boron and para oxygen-π-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.

8.
Angew Chem Int Ed Engl ; 60(28): 15335-15339, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33904242

ABSTRACT

Pure organic room-temperature phosphorescence (RTP) materials are considered as potential candidates for replacing precious metal complexes to fabricate highly efficient organic light-emitting devices (OLEDs). However, applications of the reported RTP materials in OLEDs are seriously impeded by their low photoluminescence quantum yields (PLQYs) in a thin film state. To overcome these obstacles, we established a new strategy to construct highly efficient OLEDs based on a pure organic RTP material sensitized fluorescence emitter by selecting benzimidazole-triazine molecules (PIM-TRZ), 2,6-di(phenothiazinyl)naphthalene (ß-DPTZN), and 5,6,11,12-tetraphenylnaphthacene (rubrene) as host, phosphor sensitizer, and fluorescent emitter, respectively. The perfect combination of host, phosphorescent sensitizer, and fluorescent emitter in the emitting layer ensure the outstanding performance of the devices with an external quantum efficiency (EQE) of 15.7 %.

9.
Chempluschem ; 86(1): 95-102, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33394570

ABSTRACT

The π-conjugation of molecules has a large influence on their excited state properties, especially for red thermally activated delayed fluorescence (TADF) materials. Two orange-red TADF compounds comprising dual dicyano-substituted pyrazine/quinoxaline acceptors have been designed and synthesized. TPA-2DCNQ (3,3'-((phenylazanediyl)bis(4,1-phenylene))bis(2-phenylquinoxaline-6,7-dicarbonitrile) with extended π-conjugated quinoxaline as the acceptor exhibits higher photoluminescence quantum yields (ca. 0.67-0.71) in doped films. A smaller energy splitting (ΔEst ) between the first singlet excited state and triplet excited state is also achieved, indicating that extending the π-conjugation of the acceptor rationally is an effective approach to designing highly efficient long-wavelength TADF materials. Devices with TPA-2DCNQ as the emitter display maximum external quantum efficiencies (EQEs) of 12.6-14.0 %, which are more than twice those of devices containing TPA-2DCNPZ (6,6'-((phenylazanediyl)bis(4,1-phenylene))bis(5-phenylpyrazine-2,3-dicarbonitrile).

10.
Chemistry ; 26(19): 4410-4418, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32017269

ABSTRACT

Two new iridium(III) complexes were synthesized by introducing two trifluoromethyl groups into an ancillary ligand to develop pure-red emitters for organic light-emitting diodes (OLEDs). The electron-donating ability of the ancillary ligands is suppressed, owing to the electron-withdrawing nature of trifluoromethyl groups, which can reduce the HOMO energy levels compared with those of compounds without trifluoromethyl groups. However, the introduction of trifluoromethyl groups into the ancillary ligand has little impact on the LUMO energy levels. Therefore, a well-tuned, pure-red, excited-state energy was achieved by regulating the relative energy level between the HOMO and LUMO. OLEDs with these complexes as emitters showed high external quantum efficiencies (EQEs) of 26 % and realized high EQEs of about 25 % and fairly low driving voltages of 3.3-3.6 V for practical luminance of 1000 cd m-2 , as well as excellent Commission Internationale de L'Eclairage (CIE) coordinates of (0.66, 0.33) and (0.67, 0.33); thus, this demonstrates the successful molecular design strategy by modifying the electron-donating ability of ancillary ligand.

11.
J Phys Chem Lett ; 10(19): 5983-5988, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31537062

ABSTRACT

A pure organic molecule 2,6-di(phenothiazinyl)naphthalene (DPTZN) with room-temperature phosphorescence (RTP) features was developed. Remarkably, a triazine-benzimidazole-based molecule TRZ-BIM can significantly improve the RTP efficiency of DPTZN in DPTZN:TRZ-BIM blend films. The photoluminescence quantum yield (PLQY) of 10 wt % DPTZN:TRZ-BIM blend film is 38%. The RTP property of DPTZN:TRZ-BIM blend films was characterized by steady, time-resolved, and temperature-dependent emission spectra. An organic light-emitting diode (OLED) with 10 wt % DPTZN:TRZ-BIM blend film as the emitting layer showed a high maximum external quantum efficiency of 11.5%, current efficiency of 33.8 cd A-1, and power efficiency of 32.6 lm W-1. Herein, we have developed an efficient approach to achieve precious-metal-free organic films that can be employed to fabricate high-performance phosphorescence OLEDs.

12.
J Phys Chem Lett ; 10(11): 2811-2816, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31082247

ABSTRACT

Benzimidazole-triazine-based electron acceptor PIM-TRZ with high triplet exited-state energy and strong electron-transport ability was newly developed. A series of highly efficient exciplex emitters have been fabricated. The TAPC:PIM-TRZ (TAPC: di-[4-( N, N-ditoly amino)-phenyl]cyclohexane) film shows a high photoluminescence (PL) quantum yields (PLQY, Φf) of 93.4%, and the device based on TAPC:PIM-TRZ exhibits a low turn-on voltage of 2.3 V, high maximum efficiency of 71.2 cd A-1 (current efficiency, CE), 97.3 lm W-1 (power efficiency, PE), and 21.7% (external quantum efficiency, EQE), as well as a high EQE of 16.2% at a luminance of 5000 cd m-2. The device displays the highest efficiency among reported organic light-emitting devices with an exciplex film as the emitting layer. Furthermore, a green device is also fabricated with a TAPC:PIM-TRZ cohost using C545T (C545T: (10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1 H,5 H,11 H-benzopyrano[6,7-8- I, j]quinolizin-11-one)) as the dopant, and the highest CE, PE, and EQE are 68.3 cd A-1, 86.6 lm W-1, and 20.2%, respectively.

13.
Angew Chem Int Ed Engl ; 56(38): 11525-11529, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28718216

ABSTRACT

The design and synthesis of highly efficient deep red (DR) and near-infrared (NIR) organic emitting materials with characteristic of thermally activated delayed fluorescence (TADF) still remains a great challenge. A strategy was developed to construct TADF organic solid films with strong DR or NIR emission feature. The triphenylamine (TPA) and quinoxaline-6,7-dicarbonitrile (QCN) were employed as electron donor (D) and acceptor (A), respectively, to synthesize a TADF compound, TPA-QCN. The TPA-QCN molecule with orange-red emission in solution was employed as a dopant to prepare DR and NIR luminescent solid thin films. The high doped concentration and neat films exhibited efficient DR and NIR emissions, respectively. The highly efficient DR and NIR organic light-emitting devices (OLEDs) were fabricated by regulating TPA-QCN dopant concentration in the emitting layers.

14.
Angew Chem Int Ed Engl ; 55(50): 15589-15593, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27862811

ABSTRACT

The design and preparation of metal-free organic materials that exhibit room-temperature phosphorescence (RTP) is a very attractive topic owing to potential applications in organic optoelectronic devices. Herein, we present a facile approach to efficient and long-lived organic RTP involving the doping of N-phenylnaphthalen-2-amine (PNA) or its derivatives into a crystalline 4,4'-dibromobiphenyl (DBBP) matrix. The resulting materials showed strong and persistent RTP emission with a quantum efficiency of approximately 20 % and a lifetime of a few to more than 100 milliseconds. Bright white dual emission containing blue fluorescence and yellowish-green RTP from the PNA-doped DBBP crystals was also confirmed by Commission Internationale de l'Eclairage (CIE) coordinates of (x=0.29-0.31, y=0.38-0.41).

SELECTION OF CITATIONS
SEARCH DETAIL
...