Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(2): 750-755, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36596213

ABSTRACT

The anomalously fast growth of the silicon oxide layer at room temperature has been reported for the Cu/Si system. However, the systematical exploration of such a reaction under humidity conditions has not yet been carried out. Through one combination of the experiments and first-principle density functional theory (DFT) simulations, here, we investigate the influence of the imparted Cu atoms in Cu/Si on the oxidation of Si with the presence of H2O. The Cu addition causes the geometric distortion of the Si lattice, which alters the charge transfer to absorbed H2O and decreases its dissociation energy. This results in the experimental formation of much defective SiOx for the Cu/Si system than bare Si under humidity conditions. Furthermore, the presence of such an oxide structure and the catalytic effect of Cu provide the suitable diffusion channels and adsorption sites for the H2O transport and its dissociation. This enhances the oxidation rate of Si consequently and results in the fast growth of the oxide layer on Cu/Si at room temperature.

2.
Sensors (Basel) ; 18(10)2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30282945

ABSTRACT

Entropy generation in irreversible processes is a critical issue that affects the failure and aging of electrical, chemical or mechanical systems. The promotion of energy conversion efficiency needs to reduce energy losses, namely to decrease entropy generation. A pyroelectric type of entropy detector is proposed to monitor energy conversion processes in real time. The entropy generation rate can be derived from the induced pyroelectric current, temperature, thermal capacity, pyroelectric coefficient and electrode area. It is profitable to design entropy detectors to maintain a small thermal capacity while pyroelectric sensors minimize geometrical dimensions. Moreover, decreasing the electrode area of the PZT cells could avoid affecting the entropy variation of the measured objects, but the thickness of the cells has to be greatly reduced to promote the temperature variation rate and strengthen the electrical signals. A commercial capacitor with a capacitance of 47 µF and a maximum endured voltage of 4 V were used to estimate the entropy to act as an indicator of the capacitors' time-to-failure. The threshold time was evaluated by using the entropy generation rates at about 7.5 s, 11.25 s, 20 s and 30 s for the applied voltages of 40 V, 35 V, 30 V and 25 V respectively, while using a PZT cell with dimensions of 3 mm square and a thickness of 200 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...