Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37112871

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 remains a global public health threat and has prompted the development of antiviral therapies. Artificial intelligence may be one of the strategies to facilitate drug development for emerging and re-emerging diseases. The main protease (Mpro) of SARS-CoV-2 is an attractive drug target due to its essential role in the virus life cycle and high conservation among SARS-CoVs. In this study, we used a data augmentation method to boost transfer learning model performance in screening for potential inhibitors of SARS-CoV-2 Mpro. This method appeared to outperform graph convolution neural network, random forest and Chemprop on an external test set. The fine-tuned model was used to screen for a natural compound library and a de novo generated compound library. By combination with other in silico analysis methods, a total of 27 compounds were selected for experimental validation of anti-Mpro activities. Among all the selected hits, two compounds (gyssypol acetic acid and hyperoside) displayed inhibitory effects against Mpro with IC50 values of 67.6 µM and 235.8 µM, respectively. The results obtained in this study may suggest an effective strategy of discovering potential therapeutic leads for SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Pandemics , Artificial Intelligence , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Machine Learning , Molecular Docking Simulation
2.
Eur J Med Chem ; 244: 114804, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36208510

ABSTRACT

Interaction between ephrin receptor EphB4 and its ligand EFNB2 mediates bidirectional signaling important for cancer: forward EFNB2-to-EphB4 signaling that is tumor suppressive, and reverse EphB4-to-EFNB2 signaling that promotes angiogenesis important for tumor growth and metastasis. Molecular agents targeting these forward and reverse signals of EphB4-EFNB2 interaction can be used to probe the molecular mechanisms of these complex signaling pathways and develop new anticancer therapeutics. In this study, we applied a bivalent ligand design strategy to synthesize a novel dimeric peptide based on an antagonist TNYL-RAW. The dimeric peptide possessed higher EphB4 receptor binding affinity than the monomeric TNYL-RAW peptide. Interestingly, the dimerization of TNYL-RAW peptide converted a monomeric antagonist of EphB4 to a dimeric agonist. This dimeric agonist promoted EphB4 phosphorylation, internalization and degradation, reduced cancer cell motility, and inhibited tube formation of HUVEC. To investigate the mechanism of action of this bivalent dimeric peptide, FRET experiments and molecular dynamic simulation were conducted and suggested that this bivalent ligand recognizes two EphB4 simultaneously which may promote receptor dimerization and oligomerization. This was further supported by the study of this bivalent ligand containing deletion of critical residues on one of its monomers which impaired its simultaneous binding to two EphB4 and ability to cause EphB4 dimerization and phosphorylation. These results demonstrate the value of this novel bivalent agonist ligand of EphB4 as a probe of the bidirectional signaling of EphB4-EFNB2 and lead for cancer drug development.


Subject(s)
Neoplasms , Receptor, EphB4 , Humans , Ligands , Receptor, EphB4/metabolism , Ephrin-B2/metabolism , Receptor Protein-Tyrosine Kinases , Peptides/pharmacology
3.
Eur J Med Chem ; 215: 113267, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33639344

ABSTRACT

Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome's substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Ketones/pharmacology , Proteasome Inhibitors/pharmacology , SARS-CoV-2/drug effects , Amides/chemical synthesis , Amides/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Calpain/chemistry , Calpain/metabolism , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Screening Assays, Antitumor , Humans , Ketones/chemical synthesis , Ketones/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/metabolism , Protein Binding , Structure-Activity Relationship
4.
Eur J Med Chem ; 200: 112410, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32492596

ABSTRACT

CXCR4, a well-studied coreceptor of human immunodeficiency virus type 1 (HIV-1) entry, recognizes its cognate ligand SDF-1α (also named CXCL12) which plays many important roles, including regulating immune cells, controlling hematopoietic stem cells, and directing cancer cells migration. These pleiotropic roles make CXCR4 an attractive target to mitigate human disorders. Here a new class of symmetrical polyamines was designed and synthesized as potential small molecule CXCR4 antagonists. Among them, a representative compound 21 (namely HF50731) showed strong CXCR4 binding affinity (mean IC50 = 19.8 nM) in the CXCR4 competitive binding assay. Furthermore, compound 21 significantly inhibited SDF-1α-induced calcium mobilization and cell migration, and blocked HIV-1 infection via antagonizing CXCR4 coreceptor function. The structure-activity relationship analysis, site-directed mutagenesis, and molecular docking were conducted to further elucidate the binding mode of compound 21, suggesting that compound 21 could primarily occupy the minor subpocket of CXCR4 and partially bind in the major subpocket by interacting with residues W94, D97, D171, and E288. Our studies provide not only new insights for the fragment-based design of small molecule CXCR4 antagonists for clinical applications, but also a new and effective molecular probe for CXCR4-targeting biological studies.


Subject(s)
Drug Design , Polyamines/chemical synthesis , Receptors, CXCR4/antagonists & inhibitors , Binding Sites , Binding, Competitive , Cell Line , Chemokine CXCL12 , HIV Infections/prevention & control , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Polyamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...