Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(32): 38633-38643, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37531460

ABSTRACT

Ultrahigh energy-storage performance of dielectric ceramic capacitors is generally achieved under high electric fields (HEFs). However, the HEFs strongly limit the miniaturization, integration, and lifetime of the dielectric energy-storage capacitors. Thus, it is necessary to develop new energy-storage materials with excellent energy-storage densities under moderate electric fields (MEFs). Herein, the antiferroelectric material Ag0.9Ca0.05NbO3 (ACN) was used to modify the relaxor ferroelectric material 0.6Na0.5Bi0.5TiO3-0.4Sr0.7Bi0.2TiO3 (NBT-SBT). The introduction of ACN results in high polarization strength, regulated composition of rhombohedral (R3c) and tetragonal (P4bm), nanodomains, and refined grain size. An outstanding recoverable energy density (Wrec = 4.6 J/cm3) and high efficiency (η = 82%) were realized under an MEF of 260 kV/cm in 4 mol % ACN-modified NBT-SBT ceramic. The first-principles calculation reveals that the interaction between Bi and O is the intrinsic mechanism of the increased polarization. A new parameter ΔP/Eb was proposed to be used as the figure of merit to measure the energy-storage performance under MEFs (∼200-300 kV/cm). This work paves a new way to explore energy-storage materials with excellent-performance MEFs.

2.
ACS Appl Mater Interfaces ; 15(36): 42774-42783, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37641444

ABSTRACT

Lead-free dielectric capacitors are excellent candidates for pulsed power devices. However, their low breakdown strength (Eb) strongly limits their energy-storage performance. In this study, Sr0.7Bi0.2TiO3 (SBT) and Bi(Mg0.5Hf0.5)O3 (BMH) were introduced into BaTiO3 (BT) ceramics to suppress interfacial polarization and modulate the microstructure. The results show that the introduction of SBT and BMH increases the band gap width, reduces the domain size, and, most importantly, successfully attenuates the interfacial polarization. Significantly enhanced Eb values were obtained in (1 - x)(0.65BaTiO3-0.35Sr0.7Bi0.2TiO3)-xBi(Mg0.5Hf0.5)O3 (BSBT-xBMH) ceramics. Meanwhile, the interfacial polarization was reduced to near zero in the sample with x = 0.10, achieving an ultrahigh Eb (64 kV/mm) and a very large recoverable energy-storage density (Wrec ≈ 9.13 J/cm3). In addition, the sample has excellent thermal stability (in line with EIA-X7R standards) and frequency stability. These properties indicate that the BSBT-0.10BMH ceramic holds promising potential for the application of pulsed power devices.

3.
Chemosphere ; 221: 375-382, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30641379

ABSTRACT

The integrated sulfur- and Fe0-based autotrophic denitrification process in an anoxic fluidized-bed membrane bioreactor (AnFB-MBR) was developed for the nitrate-contaminated water treatment in order to control sulfate generation and avoid alkalinity supplement. The nitrate removal rate of the AnFB-MBR reached 1.22 g NO3--N L-1d-1 with NO3--N ranging 40-200 mg L-1 at hydraulic retention times of 1.0-5.0 h. The denitrification in the integrated system was simultaneously carried out by sulfur- and Fe0-oxidizing autotrophic denitrifiers. The effluent sulfate generation was decreased by 29.3-70.3% and 31.2-50.9% due to the functional role of Fe0-based denitrification in the integrated system. Alkalinity produced by Fe0-oxidizing autotrophic denitrification could compensate for the alkalinity consumption by sulfur-based autotrophic denitrification. The sulfur- and Fe0-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Thiobacillus, Sulfurimonas, and Geothrix genera. The integrated modes leads to a harmonious co-existence of sulfur- and Fe0-oxidizing denitrifying microbes, which may make a difference to the functional performance of the bioreactor. Overall, the integrated sulfur- and Fe0-based autotrophic denitrification could overcome the shortcomings of excess sulfate generation and external alkalinity supplementation compared to the sole sulfur-based autotrophic denitrification, indicating further potential for the technology in practice.


Subject(s)
Autotrophic Processes , Bacteria/classification , Bioreactors/standards , Denitrification , Water Purification/methods , Bioreactors/microbiology , Hypoxia , Iron , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...