Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 241: 115986, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38310830

ABSTRACT

Toxoplasmosis is a common zoonotic disease caused by a protozoan parasite Toxoplasma gondii (Tox), approximately infecting one-third of human populations worldwide. This study developed the carbon nanospheres (CNPs) based dual spectral-overlapped fluorescence quenching lateral flow immunoassay (CNPs-FQLFIA) for detection of Tox antibodies (ToxAbs). The CNPs have been effectively coupled with Tox antigen (ToxAg), which can completely overlap the excitation and emission spectra of europium nanospheres (EuNPs) and CdSe/ZnS quantum dots (QDs) in testing strips of CNPs-QDs-FQLFIA or CNPs-EuNPs-FQLFIA. The sensitivity of CNPs-EuNPs-FQLFIA or CNPs-QDs-FQLFIA was 4 or 8 IU/mL under natural light readout, or both 4 IU/mL ToxAbs under ultraviolet (UV) light readout by the naked eyes, respectively. The limit of detection (LOD) of two types of CNPs-FQLFIA was both 1 IU/mL ToxAbs under UV light by a dry fluorescence analyzer, but no cross-reaction was found with other antibodies. The intra-assay coefficient variation (CV) of both CNPs-EuNPs-FQLFIA and CNPs-QDs-FQLFIA was less than 8%, while the inter-assay CV was less than 14%, respectively. The correlation coefficient (R2) of CNPs-EuNPs-FQLFIA or CNPs-QDs-FQLFIA to measure the different concentrations of ToxAbs spiked serum samples was 0.99712 and 0.99896, respectively. The CNPs-FQLFIA presented a characteristics of 94.3% sensitivity, 100% specificity and 98% accuracy for detection of ToxAbs in clinical serum samples. In conclusion, CNPs-FQLFIA with EuNPs or QDs fluorescence reporter was an easy, rapid, sensitive, precise and quantitative assay for detecting Tox antibodies in human blood samples.


Subject(s)
Nanospheres , Quantum Dots , Toxoplasmosis , Humans , Carbon , Immunoassay , Toxoplasmosis/diagnosis
2.
J AOAC Int ; 106(4): 837-845, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37027227

ABSTRACT

BACKGROUND: Florfenicol (FF) is a chloramphenicol analogue used in animals, and florfenicol amine (FFA) is the main metabolite of FF. However, their residues in agricultural products are harmful to human health. A highly specific and sensitive assay for FF/FFA detection needs to be developed since the traditional detection methods are low in sensitivity. OBJECTIVE: In this study, a new method for rapid quantification of FF/FFA in poultry eggs by helper antibody-based fluorescent immunochromatographic assay (HAFIA) was established. METHODS: Triple antibodies including a primary monoclonal antibody (mAb) specific to the targets FF and FFA, a secondary polyclonal antibody (pAb) labeled with europium nanoparticles (EuNPs), and a helper monoclonal antibody (hAb), reacting with pAb but not with the mAb or the target antigen, are designed, which can form structural aggregation complexes in microwells with a single step of reactions. By loading the reaction sample solution, the triple-antibodies (mAb-pAb-hAb)-EuNPs complexes migrate to the test (T) line on the nitrocellulose membrane of testing strip and are competitively captured by the immobilized FF-bovine serum album (BSA) conjugates on the membrane and the FF/FFA targets in the sample solution. RESULTS: Fluorescence on the T line is read by a portable fluorescent strip reader in 10 min, and the result is given as the ratio of fluorescent intensities on the T and control (C) lines. This new fluorescent testing strip, with amplified signal from the triple-antibody complex, has 50-fold higher sensitivity than conventional colloidal gold-lateral flow immunoassays (CG-LFIAs), and can detect as low as 0.01 ng/mL FF and 0.1 ng/mL FFA targets from egg samples. CONCLUSION: The developed competitive fluorescent immunochromatography method based on auxiliary antibodies has the advantages of high sensitivity and specificity for the rapid and quantitative detection of FF/FFA in poultry eggs. HIGHLIGHTS: Newly designed helper antibody and portable device were applied to quantitative detection. HAFIA tests egg samples and results can be obtained in 10 minutes. HAFIA has the advantages of being more convenient, faster and does not require professional laboratory personnel.


Subject(s)
Metal Nanoparticles , Poultry , Animals , Humans , Europium , Immunoassay , Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods
3.
ACS Sens ; 7(7): 1985-1995, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35766020

ABSTRACT

To control the coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for simple, rapid, and reliable detection methods to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, especially in community hospitals or clinical centers. The SARS-CoV-2 nucleocapsid protein (NP) is an important index for diagnosis of COVID-19. Here, we proposed a smartphone-based high-throughput fiber-integrated immunosensing system (HFIS) for detecting the SARS-CoV-2 NP in serum samples within 45 min. For the testing of NP standards, the linear detection range was 7.8-1000 pg/mL, the limit of detection was 7.5 pg/mL, and the cut-off value was 8.923 pg/mL. Twenty-five serum samples from clinically diagnosed COVID-19 patients and 100 negative control samples from healthy blood donors were tested for SARS-CoV-2 NP by HFIS, and the obtained results were compared with those of ELISA and Simple Western analysis. The results showed that the HFIS sensitivity and specificity were 72% [95% confidence interval (CI): 52.42-85.72%] and 100% (95% CI: 96.11-100%), respectively, which significantly correlated with those from the commercial ELISA kit and Simple Western analysis. This portable high-throughput HFIS assay could be an alternative test for detecting SARS-CoV-2 NP in blood samples on site.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , Point-of-Care Testing , Smartphone
4.
Mol Ther Methods Clin Dev ; 26: 181-190, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35756078

ABSTRACT

Cats are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and risk transmitting viruses to naive cats or humans. Here, based on our novel adenovirus-vectored COVID-19 vaccine, the immunogenicity of Sad23L-nCoV-S vaccine was evaluated in cats by prime-boost vaccinations. Five cats were primed with a dose of 108 plaque-forming units (PFUs) Sad23L-nCoV-S vaccine and then boosted with an equal dose of same vaccine at a 4-week interval. Cat serum neutralizing antibody (NAb) titers (the sample dilution at which 50% inhibitory concentration [IC50]) were measured as IC50 15,849 to wild-type strain, IC50 6,591 to Alpha, IC50 2,315 to Beta, IC50 2,744 to Gamma, IC50 1,848 to Delta, and IC50 318 to Omicron variants of pseudotyped SARS-CoV-2 viruses at week 6 post-prime vaccination. All NAb levels to these five variants were ≥IC50 49 from vaccinated cats at week 10, while 48.8% to Delta and 100% to Omicron variants were

5.
Int J Infect Dis ; 121: 58-65, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35483554

ABSTRACT

BACKGROUND: As several vaccines for SARS-CoV-2 have been developed, a large proportion of individuals have been vaccinated worldwide so far. The rapid and accurate immunoassays are urgently needed for detecting the specific virus-neutralizing antibody (NAb), which reflect the protective effect of the vaccines among different populations. METHODS: In this study, we designed a quantum dot lateral flow immunoassay strip (QD-LFIA) for smartphones for the detection of specific IgG or neutralizing antibodies in SARS-CoV-2 in human serum or whole blood samples. The recombinant receptor binding domain of the SARS-CoV-2 spike protein was used as the antigen to combine with NAb or angiotensin-converting enzyme 2. RESULTS: Among 81 patients who recovered from COVID-19 who were diagnosed using the nucleic acid test initially, 98.8% (80/81) were positive for IgG and 88.9% (72/81) were positive for NAb by QD-LFIA. Among 64 individuals inoculated with inactivated vaccines and six subunit vaccines, 90% (63/70) were positive for IgG and 82.9% (58/70) were positive for NAb by QD-LFIA, whereas no cross-reaction was found in 150 healthy blood donors, two patients with influenza B, and three patients with common cold. CONCLUSION: The established platform could achieve a rapid and accurate detection of NAb specific to SARS-CoV-2, which could be used for detecting the protective effect of the vaccines in areas of world that currently affected by the pandemic.


Subject(s)
COVID-19 , Quantum Dots , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Immunoassay , Immunoglobulin G , SARS-CoV-2 , Smartphone , Spike Glycoprotein, Coronavirus
6.
Sens Actuators B Chem ; 349: 130718, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34539081

ABSTRACT

The establishment of a simple, low-cost, high-sensitive and rapid immunoassay for detecting SARS-CoV-2 antigen in human blood is an effective mean of discovering early SARS-CoV-2 infection and controlling the pandemic of COVID-19. Herein, a smartphone based nanozyme linked immunochromatographic sensor (NLICS) for the detection of SARS-CoV-2 nucleocapsid protein (NP) has been developed on demand. The system is integrated by disposable immunochromatography assay (ICA) and optical sensor devices. Immunoreaction and enzyme-catalyzed substrate color reaction were carried out on the chromatographic strip in a device, of which the light signal was read by a photometer through a biosensor channel, and the data was synchronously transmitted via the Bluetooth to the app in-stored smartphone for reporting the result. With a limit of detection (LOD) of 0.026 ng/mL NP, NLICS had the linear detection range (LDR) between 0.05 and 1.6 ng/mL NP, which was more sensitive than conventional ICA. NLICS took 25 min for reporting results. For detection of NP antigen in clinical serum samples from 21 COVID-19 patients and 80 healthy blood donor controls, NLICS and commercial enzyme linked immunosorbent assay (ELISA) had 76.2% or 47.6% positivity, and 100% specificity, respectively (P = 0.057), while a good correlation coefficient (r = 0.99) for quantification of NP between two assays was obtained. In conclusion, the NLICS was a rapid, simple, cheap, sensitive and specific immunochromatographic sensing assay for early diagnosis of SARS-CoV-2 infection.

7.
Front Microbiol ; 12: 692831, 2021.
Article in English | MEDLINE | ID: mdl-34497592

ABSTRACT

Since December 2019, a novel coronavirus (SARS-CoV-2) has resulted in a global pandemic of coronavirus disease (COVID-19). Although viral nucleic acid test (NAT) has been applied predominantly to detect SARS-CoV-2 RNA for confirmation diagnosis of COVID-19, an urgent need for alternative, rapid, and sensitive immunoassays is required for primary screening of virus. In this study, we developed a smartphone-based nanozyme-linked immunosorbent assay (SP-NLISA) for detecting the specific nucleocapsid phosphoprotein (NP) of SARS-CoV-2 in 37 serum samples from 20 COVID-19 patients who were diagnosed by NAT previously. By using SP-NLISA, 28/37 (75.7%) serum samples were detected for NP antigens and no cross-reactivity with blood donors' control samples collected from different areas of China. In a control assay using the conventional enzyme-linked immunosorbent assay (ELISA), only 7/37 (18.91%) serum samples were detected for NP antigens and no cross-reactivity with control samples. SP-NLISA could be used for rapid detection of SARS-CoV-2 NP antigen in primary screening of SARS-CoV-2 infected individuals.

8.
Emerg Microbes Infect ; 10(1): 1002-1015, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33993845

ABSTRACT

ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/adverse effects , Female , Genetic Vectors , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...