Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34257691

ABSTRACT

AIM: The aim of this study was to explore whether letrozole and high-fat diets (HFD) can induce obese insulin-resistant polycystic ovary syndrome (PCOS) with intestinal flora dysbiosis in a rat model. We compared the changes in the intestinal flora of letrozole-induced rats fed with HFD or normal chow, to explore the effects of HFD and letrozole independently and synergistically on the intestinal flora. METHODS: Five-week-old female Sprague Dawley (SD) rats were divided into four groups: control (C) group fed with regular diet; L1 group administered with letrozole and fed with regular diet; L2 group received letrozole and fed with HFD; and HFD group fed with HFD. At the end of the experiment, ovarian morphology, hormones, metabolism, oxidative stress, and inflammatory status of all rats were studied. 16S rDNA high-throughput sequencing was used to profile microbial communities, and various multivariate analysis approaches were used to quantitate microbial composition, abundance, and diversity. RESULTS: Compared to the C group, the increased plasma fasting insulin and glucose, HOMA-IR, triglyceride, testosterone, and malondialdehyde were significantly higher in the L2 group, while high-density lipoprotein cholesterol was significantly lower in the L1 group and L2 group. The indices of Chao1 and the Abundance-based Coverage Estimator (ACE) (α-diversity) in the L2 and HFD groups were significantly lower than that in the C group. Bray-Curtis dissimilarity based principal coordinate analysis (PCoA) plots and analysis of similarities (ANOSIM) test showed obvious separations between the L2 group and C group, between the HFD group and C group, and between the L2 and HFD groups. At the phylum level, Firmicutes and ratio of Firmicutes and Bacteroidetes (F/B ratio) were increased in the L2 group; Bacteroidetes was decreased in the L2 and HFD groups. No significant differences in bacterial abundance between the C group and L1 group were observed at the phylum level. Based on linear discriminant analysis (LDA) effect size (LEfSe) analysis, the bacterial genera (the relative abundance > 0.1%, LDA > 3, p < 0.05) were selected as candidate bacterial signatures. They showed that the abundance of Vibrio was significantly increased in the L1 group; Bacteroides and Phascolarctobacterium were enriched in the HFD group, and Bacteroides, Phascolarctobacterium, Blautia, Parabacteroides, Akkermansia [Ruminococcus]_torques_group, and Anaerotruncus were enriched in the L2 group. CONCLUSION: The effect of letrozole on intestinal flora was not significant as HFD. HFD could destroy the balance of intestinal flora and aggravate the intestinal flora dysbiosis in PCOS. Letrozole-induced rats fed with HFD have many characteristics like human PCOS, including some metabolic disorders and intestinal flora dysbiosis. The dysbiosis was characterized by an increased Firmicutes/Bacteroidetes ratio, an expansion of Firmicutes, a contraction of Bacteroidetes, and the decreased microbial richness. Beta-diversity also showed significant differences in intestinal microflora, compared with control rats.

2.
Acta Pharmacol Sin ; 39(9): 1421-1438, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29770796

ABSTRACT

Fufang Danshen (FFDS or Compound Danshen) consists of three Chinese herbs Danshen (Salviae miltiorrhizae radix et rhizome), Sanqi (Notoginseng radix et rhizome) and Tianranbingpian (Borneolum, or D-borneol), which has been show to significantly improve the function of the nervous system and brain metabolism. In this study we explored the possible mechanisms underlying the therapeutic effects of the combination of the effective components of FFDS (Tan IIA, NG-R1 and Borneol) in the treatment of Alzheimer's disease (AD) based on network pharmacology. We firstly constructed AD-related FFDS component protein interaction networks, and revealed that macrophage migration inhibitory factor (MIF) might regulate neuronal apoptosis through Bad in the progression of AD. Then we investigated the apoptosis-inducing effects of MIF and the impact of the effective components of FFDS in human neuroblastoma SH-SY5Y cells. We observed the characteristics of a "Pendular state" of MIF, where MIF (8 ng/mL) increased the ratio of p-Bad/Bad by activating Akt and the IKKα/ß signaling pathway to assure cell survival, whereas MIF (50 ng/mL) up-regulated the expression of Bad to trigger apoptosis of SH-SY5Y cells. MIF displayed neurotoxicity similar to Aß1-42, which was associated with the MIF-induced increased expression of Bad. Application of the FFDS composite solution significantly decreased the expression levels of Bad, suppressed MIF-induced apoptosis in SH-SY5Y cells. In a D-galactose- and AlCl3-induced AD mouse model, administration of the FFDS composite solution significantly improved the learning and memory, as well as neuronal morphology, and decreased the serum levels of INF-γ. Therefore, the FFDS composite solution exerts neuroprotective effects through down-regulating the level of Bad stimulated by MIF.


Subject(s)
Alzheimer Disease/drug therapy , Apoptosis/drug effects , Drugs, Chinese Herbal/therapeutic use , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Neuroprotective Agents/therapeutic use , Animals , Cell Line, Tumor , Humans , Male , Mice, Inbred BALB C , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , bcl-Associated Death Protein/metabolism
3.
Zhonghua Yi Xue Za Zhi ; 85(26): 1836-41, 2005 Jul 13.
Article in Chinese | MEDLINE | ID: mdl-16253190

ABSTRACT

OBJECTIVE: To investigate the effects of rhein on the progression of renal injury and cell apoptosis in glomerulosclerosis, and further explore the protective mechanism of rhein on glomerulosclerosis. METHODS: Glomerulosclerosis models were made for SD rats by unilateral nephrectomy and being injected with Adriamycin into caudal vein, and randomly divided into control group, renal disease group, Rhein treatment group and Benazepril treatment group, and 6 rats in each group were killed at the 6th, 8th, 10th, 12th week respectively. The apoptosis protease-3 (caspase-3) in renal cortex was determined by immunohistochemistry stain method, and the activity of caspase-3 was measured by colorimetry, and the activity of nuclear factor-kappa B (NF-kappaB) was analyzed by gel electrophoretic mobility shift assay (EMSA), and renal tissue cell apoptosis was tested by terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) in order to observe expressions of caspase-3 and NF-kappaB and cell apoptosis of renal tissue. RESULTS: Renal disease group presented with distinct proteinuria, decreasing of blood albumin content and increasing of cholesterol concentration. Glomerulosclerosis index, apoptosis index, activity of NF-kappaB and expression of caspase-3 in renal disease group were more significantly higher than those in control group (P < 0.05 or P < 0.01) as time passed. Compared with the other time points in renal disease group, there were a great number of TUNEL-positive cells observed at the 10th week, slightly higher than that at the 12th week (9.3 +/- 2.3 vs 8.4 +/- 1.2, P > 0.05), the expression of Caspase-3 was also most obvious at the 10th week, significantly higher than that at the 12th week (11.4 +/- 2.5 vs 8.2 +/- 1.7, P < 0.05), which mainly located around capillary vessel in renal cortex, tending to be consistent with apoptosis cells expression. After the 8 weeks treatment of rhein or Benazepril, the number of TUNEL-positive cells significantly decreased and maintained at a certain level, and the activity of NF-kappaB and expression of caspase-3 decreased (P < 0.05), and renal pathological changes and biochemical changes improved magnificently, moreover, the expression of caspase-3 showed positive correlation with apoptosis index (r = 0.836, P < 0.01). CONCLUSION: Rhein could have significant protective effects on the progression of renal injury, and might regulate pathological changes by influencing the activities of NF-kappaB and caspase-3 in the early phase of glomerulosclerosis. Therefore, down-regulating caspase-3 expression in kidney might be one of the molecular mechanisms in the way that rhein could alleviate renal tissue cell apoptosis in glomerulosclerosis.


Subject(s)
Anthraquinones/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney Glomerulus/pathology , Animals , Kidney/drug effects , Kidney/pathology , Kidney Glomerulus/drug effects , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...