Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(6): 110006, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868202

ABSTRACT

Apolipoprotein E (apoE) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Microglia exhibit a substantial upregulation of apoE in AD-associated circumstances, despite astrocytes being the primary source of apoE expression and secretion in the brain. Although the role of astrocytic apoE in the brain has been extensively investigated, it remains unclear that whether and how apoE particles generated from astrocytes and microglia differ in biological characteristic and function. Here, we demonstrate the differences in size between apoE particles generated from microglia and astrocytes. Microglial apoE particles impair neurite growth and synapses, and promote neuronal senescence, whereas depletion of GPNMB (glycoprotein non-metastatic melanoma protein B) in microglial apoE particles mitigated these deleterious effects. In addition, human APOE4-expressing microglia are more neurotoxic than APOE3-bearing microglia. For the first time, these results offer concrete evidence that apoE particles produced by microglia are involved in neuronal senescence and toxicity.

2.
Brain Behav Immun ; 117: 155-166, 2024 03.
Article in English | MEDLINE | ID: mdl-38215888

ABSTRACT

A "switch" in the metabolic pattern of microglia is considered to be required to meet the metabolic demands of cell survival and functions. However, how metabolic switches regulate microglial function remains controversial. We found here that exposure to amyloid-ß triggers microglial inflammation accompanied by increasing GAPDH levels. The increase of GAPDH, a glycolysis enzyme, leads to the reduced release of interferon-γ (IFN-γ) from inflammatory microglia. Such alternation is translational and is regulated by the binding of glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through influencing IFN-γ expression, regulates microglia functions, including phagocytosis and cytokine production. Phosphoglycerate dehydrogenase (PHGDH), screened from different state microglia by metabolomics combined with METARECON analysis, is a metabolic enzyme adjacent downstream of GAPDH and synthesizes serine on the collateral pathway derived from glycolysis. Polarization of microglial with PHGDH as a metabolic checkpoint can be bidirectionally regulated by adding IL-4 or giving PHGDH inhibitors. Therefore, regulation of metabolic enzymes not only reprograms metabolic patterns, but also manipulates microglia functions. Further study should be performed to explore the mechanism of metabolic checkpoints in human microglia or more in vivo animal experiments, and may expand to the effects of various metabolic substrates or enzyme, such as lipids and amino acids, on the functions of microglia.


Subject(s)
Microglia , Phosphoglycerate Dehydrogenase , Animals , Humans , Phosphoglycerate Dehydrogenase/genetics , Interferon-gamma , Multiomics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...