Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Kinet ; 76: 89-100, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33603927

ABSTRACT

Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpreted with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3285-3288, 2020 07.
Article in English | MEDLINE | ID: mdl-33018706

ABSTRACT

Currently, myoelectric prostheses lack dexterity and ease of control, in part because of inadequate schemes to extract relevant muscle features that can approximate muscle activation patterns that enable individuated dexterous finger motion. This project seeks to apply a novel algorithm pipeline that extracts muscle activation patterns from one limb, as well as from forearm muscles of the opposite limb, to predict muscle activation data of opposite limb intrinsic hand muscles, with the long-range goal of informing dexterous prosthetic control.


Subject(s)
Disarticulation , Wrist , Electromyography , Hand , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...