Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.076
Filter
1.
Front Nutr ; 11: 1375130, 2024.
Article in English | MEDLINE | ID: mdl-38826584

ABSTRACT

Introduction: The effectiveness of ultra-high pressure (UHP) technology in retaining the flavor of fresh fruit and vegetable juices has been acknowledged in recent years. Along with previously hypothesized conclusions, the improvement in melon juice flavor may be linked to the reduction of its surface tension through UHP. Methods: In this paper, the particle size, free-water percentage, and related thermodynamic parameters of melon juice were evaluated in a physical point for a deeper insight. Results: The results showed that the UHP treatment of P2-2 (200 MPa for 20 min) raised the free water percentage by 7,000 times than the other treatments and both the melting enthalpy, binding constant and Gibbs free energy of P2-2 were minimized. This significantly increased the volatility of characteristic aromatic compounds in melon juice, resulting in a 1.2-5 times increase in the content of aromatic compounds in the gas phase of the P2-2 group compared to fresh melon juice.

2.
Pharmacol Ther ; : 108671, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830387

ABSTRACT

N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.

3.
Sci Rep ; 14(1): 12736, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830973

ABSTRACT

The purpose of this study was to develop and validate a physiologically based pharmacokinetic (PBPK) model combined with an EGFR occupancy (EO) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and the intracranial time-course of EGFR (T790M and L858R mutants) engagement in patient populations. The PBPK model was also used to investigate the key factors affecting OSI pharmacokinetics (PK) and intracranial EGFR engagement, analyze resistance to the target mutation C797S, and determine optimal dosing regimens when used alone and in drug-drug interactions (DDIs). A population PBPK-EO model of OSI was developed using physicochemical, biochemical, binding kinetic, and physiological properties, and then validated using nine clinical PK studies, observed EO study, and two clinical DDI studies. The PBPK-EO model demonstrated good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.7 to 1.3 for plasma AUC, Cmax, Ctrough and intracranial free concentration. The simulated time-course of C797S occupancy by the PBPK model was much lower than T790M and L858R occupancy, providing an explanation for OSI on-target resistance to the C797S mutation. The PBPK model identified ABCB1 CLint,u, albumin level, and EGFR expression as key factors affecting plasma Ctrough and intracranial EO for OSI. Additionally, PBPK-EO simulations indicated that the optimal dosing regimen for OSI in patients with brain metastases is either 80 mg once daily (OD) or 160 mg OD, or 40 mg or 80 mg twice daily (BID). When used concomitantly with CYP enzyme perpetrators, the PBPK-EO model suggested appropriate dosing regimens of 80 mg OD with fluvoxamine (FLUV) itraconazole (ITR) or fluvoxamine (FLUC) for co-administration and an increase to 160 mg OD with rifampicin (RIF) or efavirenz (EFA). In conclusion, the PBPK-EO model has been shown to be capable of simulating the pharmacokinetic concentration-time profiles and the time-course of EGFR engagement for OSI, as well as determining the optimum dosing in various clinical situations.


Subject(s)
Acrylamides , Aniline Compounds , Brain Neoplasms , ErbB Receptors , Humans , Aniline Compounds/pharmacokinetics , Aniline Compounds/administration & dosage , Acrylamides/pharmacokinetics , Acrylamides/administration & dosage , ErbB Receptors/genetics , ErbB Receptors/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Models, Biological , Mutation , Female , Male , Drug Interactions , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/blood , Antineoplastic Agents/administration & dosage , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Indoles , Pyrimidines
4.
Phytomedicine ; 130: 155724, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38759317

ABSTRACT

BACKGROUND: The identification of a novel and effective strategy for the clinical treatment of acute leukemia (AL) is a long-term goal. Minnelide, a water-soluble prodrug of triptolide, has recently been evaluated in phase I and II clinical trials in patients with multiple cancers and has shown promise as an antileukemic agent. However, the molecular mechanism underlying minnelide's antileukemic activity remains unclear. PURPOSE: To explore the molecular mechanisms by which minnelide exhibits antileukemic activity. METHODS: AL cells, primary human leukemia cells, and a xenograft mouse model were treated with triptolide and minnelide. The molecular mechanism was elucidated using western blotting, immunoprecipitation, flow cytometry, GSEA and liquid chromatography-mass spectrometry analysis. RESULTS: Minnelide was highly effective in inhibiting leukemogenesis and improving survival in two complementary AL mouse models. Triptolide, an active form of minnelide, causes cell cycle arrest in G1 phase and induces apoptosis in both human AL cell lines and primary AL cells. Mechanistically, we identified Ars2 as a new chemotherapeutic target of minnelide for AL treatment. We found that triptolide directly targeted Ars2, resulting in the downregulation of miR-190a-3p, which led to the disturbance of PTEN/Akt signaling and culminated in G1 cell cycle arrest and apoptosis. CONCLUSIONS: Our findings demonstrate that targeting Ars2/miR-190a-3p signaling using minnelide could represent a novel chemotherapeutic strategy for AL treatment and support the evaluation of minnelide for the treatment of AL in clinical trials.

5.
Anal Chem ; 96(19): 7669-7678, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38708542

ABSTRACT

Protein tyrosine kinase-7 (PTK7) has been reported as a vital participant in the Wnt signaling pathway, influencing tumorigenesis and metastasis. However, their specific roles in the mechanisms underlying cancer development and progression remain elusive. Here, using direct stochastic optical reconstruction microscopy (dSTORM) with aptamer-probe labeling, we first revealed that a weakening clustering distribution of PTK7 on the basal membranes happened as cellular migration increased during cancer progression. This correspondence was further supported by a diminished aggregated state of PTK7 caused by direct enhancement of cell migration. By comparing the alterations in PTK7 distribution with activation or inhibition of specific Wnt signaling pathway, we speculated that PTK7 could modulate cell migration by participating in the interplay between canonical Wnt (in MCF7 cells) and noncanonical Wnt signals (in MDA-MB-231 cells). Furthermore, we discovered that the spatial distribution morphology of PTK7 was also subject to the hydrolysis ability and activation state of the related hydrolase Matrix metallopeptidase14 (MMP14). This function-related specific assembly of PTK7 reveals a clear relationship between PTK7 and cancer. Meanwhile, potential molecular interactions predicted by the apparent assembly morphology can promote a deep understanding of the functional mechanism of PTK7 in cancer progress.


Subject(s)
Receptor Protein-Tyrosine Kinases , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Cell Movement , Cell Adhesion Molecules/metabolism , Wnt Signaling Pathway , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Matrix Metalloproteinase 14/metabolism
6.
BMC Infect Dis ; 24(1): 541, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816802

ABSTRACT

OBJECTIVE: Most studies investigated the relationship between COVID-19 and Guillain-Barré syndrome (GBS) by comparing the incidence of GBS before and during the pandemic of COVID-19. However, the findings were inconsistent, probably owing to varying degrees of the lockdown policy. The quarantine requirements and travel restrictions in China were lifted around December 7, 2022. This study aimed to explore whether the relative frequency of GBS increased during the major outbreak in the absence of COVID-19-mandated social restrictions in China. METHODS: GBS patients admitted to the First Hospital, Shanxi Medical University, from December 7, 2022 to February 20, 2023, and from June, 2017 to August, 2019 were included. The relative frequencies of GBS in hospitalized patients during different periods were compared. The patients with and without SARS-CoV-2 infection within six weeks prior to GBS onset formed the COVID-GBS group and non-COVID-GBS group, respectively. RESULTS: The relative frequency of GBS among hospitalized patients during the major outbreak of COVID-19 (13/14,408) was significantly higher than that before the COVID-19 epidemic (29/160,669, P < 0.001). More COVID-GBS patients (11/13) presented AIDP subtype than non-COVID-GBS cases (10/27, P = 0.003). The mean interval between onset of infective symptoms and GBS was longer in COVID-GBS (21.54 ± 11.56 days) than in non-COVID-GBS (5.76 ± 3.18 days, P < 0.001). CONCLUSIONS: COVID-19 significantly increased the incidence of GBS. Most COVID-GBS patients fell into the category of AIDP, responded well to IVIg, and had a favorable prognosis.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , SARS-CoV-2 , Humans , Guillain-Barre Syndrome/epidemiology , COVID-19/epidemiology , China/epidemiology , Male , Female , Middle Aged , Adult , Incidence , Aged , Hospitalization/statistics & numerical data , Young Adult , Pandemics , Adolescent
7.
Nat Med ; 30(5): 1448-1460, 2024 May.
Article in English | MEDLINE | ID: mdl-38760586

ABSTRACT

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Subject(s)
Heart Transplantation , Heterografts , Transplantation, Heterologous , Humans , Animals , Swine , Male , Female , Graft Rejection/immunology , Graft Rejection/genetics , Proteomics , Metabolomics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Transcriptome , Gene Expression Profiling , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lipidomics , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Multiomics
8.
Gene ; 924: 148605, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788816

ABSTRACT

BACKGROUND: Cerebral cavernous malformation (CCM) is a low-flow, bleeding-prone vascular disease that can cause cerebral hemorrhage, seizure and neurological deficits. Its inheritance mode includes sporadic or autosomal dominant inheritance with incomplete penetrance, namely sporadic CCM (SCCM) and familial CCM. SCCM is featured by single lesion and single affection in a family. Among CCM patients especially SCCM, the pathogenesis of the corresponding phenotypes and pathological features or candidate genes have not been fully elucidated yet. METHODS: Here, we performed in-depth single-cell RNA sequencing (scRNA-Seq) and bulk assay for transposase-accessible chromatin sequencing (ATAC-Seq) in SCCM and control patients. Further validation was conducted for the gene of interest using qPCR and RNA in situ hybridization (RNA FISH) techniques to provide further atlas and evidence for SCCM generative process. RESULTS: We identified six cell types in the SCCM and control vessels and found that the expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 were up-regulated in SCCM tissues. Among the six cell types, we found that compared with control conditions, PVT1 showed a rising peak which followed the pseudo-time axis in endothelial cell clusters of SCCM samples, while showed an increasing trend in smooth muscle cell clusters of SCCM samples. Further experiments indicated that, compared with the control vessels, PVT1 exhibited significantly elevated expression in SCCM samples. CONCLUSION: In SCCM conditions, We found that in the process of development from control to lesion conditions, PVT1 showed a rising peak in endothelial cells and showed an increasing trend in smooth muscle cells at the same time. Overall, there was a significantly elevated expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 in SCCM specimens compared to control samples.

9.
Neural Plast ; 2024: 2512796, 2024.
Article in English | MEDLINE | ID: mdl-38585306

ABSTRACT

Background: Stroke is a common and frequently occurring disease among middle-aged and elderly people, with approximately 55%-75% of patients remaining with upper limb dysfunction. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. Objectives: This study aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) of the primary motor cortex (M1) functional area in poststroke patients in the subacute phase is more effective in improving upper limb function than conventional tDCS. Methods: This randomized, sham-controlled clinical trial included 69 patients with subcortical stroke. They were randomly divided into the HD-tDCS, anodal tDCS (a-tDCS), and sham groups. Each group received 20 sessions of stimulation. The patients were assessed using the Action Research Arm Test, Fugl-Meyer score for upper extremities, Motor Function Assessment Scale, and modified Barthel index (MBI) pretreatment and posttreatment. Results: The intragroup comparison scores improved after 4 weeks of treatment. The HD-tDCS group showed a slightly greater, but nonsignificant improvement as compared to a-tDCS group in terms of mean change observed in function of trained items. The MBI score of the HD-tDCS group was maintained up to 8 weeks of follow-up and was higher than that in the a-tDCS group. Conclusion: Both HD-tDCS and a-tDCS can improve upper limb motor function and daily activities of poststroke patients in the subacute stage. This trial is registered with ChiCTR2000031314.


Subject(s)
Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Aged , Middle Aged , Humans , Recovery of Function , Stroke/therapy , Upper Extremity , Treatment Outcome
10.
Nat Commun ; 15(1): 2843, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565573

ABSTRACT

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.


Subject(s)
Glucose , Platelet-Derived Growth Factor , Glucose Transporter Type 1/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Membrane/metabolism , Glucose/metabolism , Transport Vesicles/metabolism
11.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668197

ABSTRACT

This study explores the effects of growth temperature of InGaN/GaN quantum well (QW) layers on indium migration, structural quality, and luminescence properties. It is found that within a specific range, the growth temperature can control the efficiency of In incorporation into QWs and strain energy accumulated in the QW structure, modulating the luminescence efficiency. Temperature-dependent photoluminescence (TDPL) measurements revealed a more pronounced localized state effect in QW samples grown at higher temperatures. Moreover, a too high annealing temperature will enhance indium migration, leading to an increased density of non-radiative recombination centers and a more pronounced quantum-confined Stark effect (QCSE), thereby reducing luminescence intensity. These findings highlight the critical role of thermal management in optimizing the performance of InGaN/GaN MQWs in LEDs and other photoelectronic devices.

12.
Sci Rep ; 14(1): 9132, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644379

ABSTRACT

The diaphragm is a unique skeletal muscle due to its continuous activation pattern during the act of breathing. The ontogeny of macrophages, pivotal cells for skeletal muscle maintenance and regeneration, is primarily based on two distinct origins: postnatal bone marrow-derived monocytes and prenatal embryonic progenitors. Here we employed chimeric mice to study the dynamics of these two macrophage populations under different conditions. Traditional chimeric mice generated through whole body irradiation showed virtually complete elimination of the original tissue-resident macrophage pool. We then developed a novel method which employs lead shielding to protect the diaphragm tissue niche from irradiation. This allowed us to determine that up to almost half of tissue-resident macrophages in the diaphragm can be maintained independently from bone marrow-derived monocytes under steady-state conditions. These findings were confirmed by long-term (5 months) parabiosis experiments. Acute diaphragm injury shifted the macrophage balance toward an overwhelming predominance of bone marrow (monocyte)-derived macrophages. However, there was a remarkable reversion to the pre-injury ontological landscape after diaphragm muscle recovery. This diaphragm shielding method permits analysis of the dynamics of macrophage origin and corresponding function under different physiological and pathological conditions. It may be especially useful for studying diseases which are characterized by acute or chronic injury of the diaphragm and accompanying inflammation.


Subject(s)
Diaphragm , Homeostasis , Macrophages , Animals , Macrophages/metabolism , Mice , Monocytes , Muscle, Skeletal/metabolism , Regeneration , Mice, Inbred C57BL , Whole-Body Irradiation , Male
13.
Adv Mater ; : e2312429, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655823

ABSTRACT

2D materials such as graphene, MoS2, and hexagonal BN are the most advanced solid lubricating materials with superior friction and anti-wear performance. However, as a typical surface phenomenon, the lubricating properties of 2D materials are largely dependent on the surrounding environment, such as temperature, stress, humidity, oxygen, and other environmental substances. Given the technical challenges in experiment for real-time and in situ detection of microscopic environment-material interaction, recent years have witnessed the acceleration of computational research on the lubrication behavior of 2D materials in realistic environments. This study reviews the up-to-date computational studies for the effect of environmental factors on the lubrication performance of 2D materials, summarizes the theoretical methods in lubrication from classical to quantum-mechanics ones, and emphasizes the importance of quantum method in revealing the lubrication mechanism at atomic and electronic level. An effective simulation method based on ab initio molecular dynamics is also proposed to try to provide more ways to accurately reveal the friction mechanisms and reliably guide the lubricating material design. On the basis of current development, future prospects, and challenges for the simulation and modeling in lubrication with realistic environment are outlined.

14.
J Colloid Interface Sci ; 667: 64-72, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615624

ABSTRACT

Na3V2(PO4)3 (NVP) has attracted considerable attention as a promising cathode material for sodium-ion batteries (SIBs). But its insufficient electronic conductivity, limited capacities, and fragile structure hinder its extended application, particularly in scenarios involving rapid charging and prolonged cycling. A hybrid cathode material has been developed to integrate both amorphous and crystalline phases, with the objective of improving the rate performance and Na storage capacity by leveraging bi-phase coordination. Consequently, the combination of amorphous and crystalline phases enhanced the kinetics of Na-ion diffusion, resulting in a 1-2 orders of magnitude enhancement in diffusion dynamics. Furthermore, the existence of amorphous states has been demonstrated to elevate the active Na2 site content, resulting in an increased reversible capacity. This assertion is substantiated by evidence derived from solid-state nuclear magnetic resonance (ss-NMR) and electrochemical characteristics. The innovative bi-phase collaborative material provides a specific capacity of 114 mAh/g at 0.2 C, exceptional rate performance of 82 mAh/g at 10 C, and remarkable long-term cycle stability, retaining 95 mAh/g at 5 C even after 300 cycles. In conclusion, the homogeneous hybridization of amorphous and crystalline phases presents itself as a promising and effective strategy for improving Na-ion storage capacity of cathodes in SIBs.

15.
Hell J Nucl Med ; 27(1): 46-54, 2024.
Article in English | MEDLINE | ID: mdl-38678384

ABSTRACT

OBJECTIVE: Recent studies have utilized fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) specifically to diagnose cases of idiopathic inflammatory myopathies (IIM), excluding inclusion body myositis (IBM). Conversely, carbon-11 (11C) labeled Pittsburgh compound B (PIB)-PET imaging is exclusively used for the detection of IBM. This research is designed to evaluate the diagnostic accuracy of PET/CT in identifying IIM by employing rigorous diagnostic accuracy testing methodologies. MATERIALS AND METHODS: A systematic review and meta-analysis were conducted across multiple databases including PubMed, and Embase. We focused on the diagnostic utility of PET/CT in IIM, assessing sensitivities, specificities, and deriving likelihood ratios (LR+ and LR-). The study was registered with PROSPERO (CRD42022343222). RESULTS: This systematic review identified 635 citations, of which 10 eligible trials were included, with a total of 419 participants. The results indicated a sensitivity of 0.86 (0.81-0.90), and a specificity of 0.93 (0.88-0.96). The synthesis of LR revealed the LR+ of 10.35 (6.31-16.98), and LR-of 0.15 (0.07-0.32). The summary receiver operating characteristic curve (SROC) showed an area under the curve (AUC) of 0.9658. Regarding IBM, the sensitivity was 0.84 (0.60-0.97), and the specificity was 1 (0.69-1). The synthesis of LR showed the LR+ of 9.61 (1.46-63.15) and an LR- of 0.21 (0.09-0.51). For disease activity, the sensitivity was 0.96 (0.92-0.99), and the specificity was 0.91 (0.084-0.96). The synthesis of LR showed an LR+ of 9.43 (5.39-16.51) and an LR- of 0.05 (0.02-0.11). CONCLUSION: Positron emission tomography/CT has great potential for accurately diagnosing and monitoring patients with IIM, and may have implications for their clinical management.


Subject(s)
Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Sensitivity and Specificity , Myositis/diagnostic imaging , Reproducibility of Results , Male , Female
16.
Phytomedicine ; 127: 155391, 2024 May.
Article in English | MEDLINE | ID: mdl-38452690

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the commonest cancers worldwide. Metastasis is the most common cause of death in patients with CRC. Arenobufagin is an active component of bufadienolides, extracted from toad skin and parotid venom. Arenobufagin reportedly inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in various cancers. However, the mechanism through which arenobufagin inhibits CRC metastasis remains unclear. PURPOSE: This study aimed to elucidate the molecular mechanisms by which arenobufagin inhibits CRC metastasis. METHODS: Wound-healing and transwell assays were used to assess the migration and invasion of CRC cells. The expression of nuclear factor erythroid-2-related factor 2 (Nrf2) in the CRC tissues was assessed using immunohistochemistry. The protein expression levels of c-MYC and Nrf2 were detected by immunoblotting. A mouse model of lung metastasis was used to study the effects of arenobufagin on CRC lung metastasis in vivo. RESULTS: Arenobufagin observably inhibited the migration and invasion of CRC cells by downregulating c-MYC and inactivating the Nrf2 signaling pathway. Pretreatment with the Nrf2 inhibitor brusatol markedly enhanced arenobufagin-mediated inhibition of migration and invasion, whereas pretreatment with the Nrf2 agonist tert­butylhydroquinone significantly attenuated arenobufagin-mediated inhibition of migration and invasion of CRC cells. Furthermore, Nrf2 knockdown with short hairpin RNA enhanced the arenobufagin-induced inhibition of the migration and invasion of CRC cells. Importantly, c-MYC acts as an upstream modulator of Nrf2 in CRC cells. c-MYC knockdown markedly enhanced arenobufagin-mediated inhibition of the Nrf2 signaling pathway, cell migration, and invasion. Arenobufagin inhibited CRC lung metastasis in vivo. Together, these findings provide evidence that interruption of the c-MYC/Nrf2 signaling pathway is crucial for arenobufagin-inhibited cell metastasis in CRC. CONCLUSIONS: Collectively, our findings show that arenobufagin could be used as a potential anticancer agent against CRC metastasis. The arenobufagin-targeted c-MYC/Nrf2 signaling pathway may be a novel chemotherapeutic strategy for treating CRC.


Subject(s)
Bufanolides , Colorectal Neoplasms , Lung Neoplasms , Animals , Mice , Humans , NF-E2-Related Factor 2/metabolism , Colorectal Neoplasms/pathology , Cell Line, Tumor , Bufanolides/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Metastasis
17.
Front Pharmacol ; 15: 1363259, 2024.
Article in English | MEDLINE | ID: mdl-38500771

ABSTRACT

Purpose: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and pulmonary EGFRm+ (T790M and L858R mutants) inhibition in Caucasian, Japanese, and Chinese populations. The PBPK model was also utilized to investigate inter-ethnic and inter-patient differences in OSI pharmacokinetics (PK) and determine optimal dosing regimens. Methods: Population PBPK models of OSI for healthy and disease populations were developed using physicochemical and biochemical properties of OSI and physiological parameters of different groups. And then the PBPK models were validated using the multiple clinical PK and drug-drug interaction (DDI) study data. Results: The model demonstrated good consistency with the observed data, with most of prediction-to-observation ratios of 0.8-1.25 for AUC, Cmax, and Ctrough. The PBPK model revealed that plasma exposure of OSI was approximately 2-fold higher in patients compared to healthy individuals, and higher exposure observed in Caucasians compared to other ethnic groups. This was primarily attributed to a lower CL/F of OSI in patients and Caucasian. The PBPK model displayed that key factors influencing PK and EGFRm+ inhibition differences included genetic polymorphism of CYP3A4, CYP1A2 expression, plasma free concentration (fup), albumin level, and auto-inhibition/induction on CYP3A4. Inter-patient PK variability was most influenced by CYP3A4 variants, fup, and albumin level. The PBPK simulations indicated that the optimal dosing regimen for patients across the three populations of European, Japanese, and Chinese ancestry was OSI 80 mg once daily (OD) to achieve the desired range of plasma Ctrough (328-677 nmol/L), as well as 80 mg and 160 mg OD for desirable pulmonary EGFRm+ inhibition (>80%). Conclusion: In conclusion, this study's PBPK simulations highlighted potential ethnic and inter-patient variability in OSI PK and EGFRm+ inhibition between Caucasian, Japanese, and Chinese populations, while also providing insights into optimal dosing regimens of OSI.

18.
Alzheimers Dement ; 20(4): 2843-2860, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445818

ABSTRACT

INTRODUCTION: Tau phosphorylated at threonine-217 (pT217-tau) is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in the brain, as soluble pT217-tau is dephosphorylated post mortem in humans. METHODS: We used multilabel immunofluorescence and immunoelectron microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS: pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to cerebrospinal fluid (CSF)/blood. Plasma pT217-tau levels increased across the age span and thus can serve as a biomarker in macaques. DISCUSSION: These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.


Subject(s)
Alzheimer Disease , tau Proteins , Animals , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Dorsolateral Prefrontal Cortex , Macaca mulatta/metabolism , tau Proteins/cerebrospinal fluid
19.
Neurol Ther ; 13(3): 551-562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427273

ABSTRACT

OBJECTIVE: This study aimed to establish and validate a nomogram prognostic model for predicting short-term efficacy of acetylcholine receptor antibody-positive (AChR-Ab+) generalized myasthenia gravis (GMG). METHODS: A retrospective observational study was conducted at the First Hospital of Shanxi Medical University, enrolling patients diagnosed with AChR-Ab+ GMG from May 2020 to September 2022. The primary outcome was the change in the Myasthenia Gravis Foundation of America (MGFA) post-intervention status after 6 months of standard treatment. Predictive factors were identified through univariate and multivariate logistic regression analyses, with significant factors incorporated into the nomogram. The bootstrap test was used for internal validation of the nomogram model. Model performance was assessed using calibration curves, receiver-operating characteristic curve analysis, and decision curve analysis (DCA). RESULTS: A total of 90 patients were enrolled, of whom 30 achieved unchanged or worse status after 6 months of standard therapy. Univariate logistic regression analysis showed that quantitative myasthenia gravis score, gender, body mass index, course of disease, hemoglobin levels, and white blood cell counts were six potential predictors. These factors were used for multivariate logistic regression analysis, and a nomogram was constructed. The calibration curve showed that the predicted value was in good agreement with the actual value (p = 0.707), and the area under the curve value (0.792, 95% CI 0.686-0.899) indicated good discrimination ability. DCA suggests that this model has potential clinical application value. CONCLUSION: The constructed nomogram, based on key patient indicators, shows promise as a clinically useful tool for predicting the short-term efficacy of treatment of AChR-Ab+ GMG. Validation in larger, multicenter cohorts is needed to further substantiate its applicability.

20.
Opt Lett ; 49(5): 1305-1308, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426999

ABSTRACT

Temperature characteristics of GaN-based laser diodes are investigated. It is noted that the characteristic temperature of the threshold current (T0) decreases with decreasing lasing wavelength for GaN-based LDs. The performance deteriorates seriously for UV LDs at high temperature. It is ascribed to the increase of carriers escaping from quantum wells due to the lower potential barrier height. In this Letter, AlGaN is used as the barrier layer in UV LDs instead of GaN to improve the temperature characteristic of the threshold current and slope efficiency by increasing the potential barrier height of quantum wells. Based on this structure, a high output power of 4.6 W is obtained at the injection current of 3.8 A; its lasing wavelength is 386.8 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...