Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17310, 2024.
Article in English | MEDLINE | ID: mdl-38699188

ABSTRACT

Background: Oat is a dual-purpose cereal used for grain and forage. The demand of oat has been increasing as the understanding of the nutritional, ecological, and economic values of oat increased. However, the frequent lodging during the growing period severely affect the high yielding potential and the quality of the grain and forage of oat. Methods: Therefore, we used the lodging-resistant variety LENA and the lodging-sensitive variety QY2 as materials, implementing four different planting densities: 2.25×106 plants/ha (D1), 4.5×106 plants/ha (D2), 6.75×106 plants/ha (D3), and 9×106 plants/ha (D4). At the appropriate growth and development stages, we assessed agronomic traits, mechanical characteristics, biochemical compositions, yield and its components. The study investigated the impact of planting density on the growth, lodging, and yield of oat, as well as their interrelationships. Additionally, we identified the optimal planting density to establish a robust crop structure. The research aims to contribute to the high-yield and high-quality cultivation of oat. Results: We observed that with increasing planting density, plant height, grass and grain yields of both varieties first increased and then decreased; root fresh weight, stem diameter, stem wall thickness, stem puncture strength, breaking strength, compressive strength, lignin and crude fiber contents, and yield components decreased; whereas the lodging rate and lodging coefficient increased. Planting density affects lodging by regulating plant height, height of center of gravity, stem wall thickness, internode length, and root fresh weight of oat. Additionally, it can impact stem mechanical strength by modulating the synthesis of lignin and crude fiber, which in turn affecting lodging resistance. Plant height, height of center of gravity, stem wall thickness, internode length, root fresh weight, breaking strength, compressive strength, lignin and crude fiber content, single-plant weight, grain yield and 1,000-grain weight can serve as important indicators for evaluating oat stem lodging resistance. We also noted that planting density affected grain yield both directly and indirectly (by affecting lodging); high density increased lodging rate and decreased grain yield, mainly by reducing 1,000-grain weight. Nonetheless, there was no significant relationship between lodging and grass yield. As appropriate planting density can increase the yield while maintaining good lodging resistance, in this study, 4.5×106 plants/ha (D2) was found to be the best planting density for oat in terms of lodging resistance and grass and grain yield. These findings can be used as a reference for oat planting.


Subject(s)
Avena , Avena/growth & development , Edible Grain/growth & development , Crop Production/methods , Agriculture/methods
2.
Front Plant Sci ; 15: 1370593, 2024.
Article in English | MEDLINE | ID: mdl-38742217

ABSTRACT

Establishing cultivated grassland in the Qinghai-Tibet Plateau region is an effective method to address the conflict between vegetation and livestock. However, the high altitude, low temperature, and arid climate in the region result in slow regeneration and susceptibility to degradation of mixed cultivation grassland containing perennial legumes and gramineous plants. Therefore, we aim to through field experiments, explore the feasibility of establishing mixed cultivation grassland of Poaceae species in the region by utilizing two grass species, Poa pratensis L. and Puccinellia tenuiflora. By employing a mixture of P. pratensis and P. tenuiflora to establish cultivated grassland, we observed significant changes in forage yield over time. Specifically, during the 3rd to 6th years of cultivation, the yield in the mixed grassland was higher than in monocultures. It exceeded the yield of monoculture P. tenuiflora by 19.38% to 29.14% and surpassed the monoculture of P. pratensis by 17.18% to 62.98%. Through the analysis of soil physicochemical properties and soil microbial communities in the cultivated grassland, the study suggests that the mixed grassland with Poaceae species can enhance soil enzyme activity and improve soil microbial communities. Consequently, this leads to increased soil nutrient levels, enhanced nitrogen fixation efficiency, and improved organic phosphorus conversion efficiency. Therefore, establishing mixed grasslands with Poaceae species in the Qinghai-Tibet Plateau region is deemed feasible.

3.
PeerJ ; 11: e16181, 2023.
Article in English | MEDLINE | ID: mdl-37810776

ABSTRACT

Abscisic acid (ABA) is a phytohormone that plays an important role in plant growth and development. Meanwhile, ABA also plays a key role in the plant response to abiotic stressors such as drought and high salinity. The pyrabactin resistance 1-like (PYR/PYL) protein family of ABA receptors is involved in the initial step of ABA signal transduction. However, no systematic studies of the PYL family in "Avena sativa, a genus Avena in the grass family Poaceae," have been conducted to date. Thus, in this study, we performed a genome-wide screening to identify PYL genes in oat and characterized their responses to drought stress. A total of 12 AsPYL genes distributed on nine chromosomes were identified. The phylogenetic analysis divided these AsPYLs into three subfamilies, based on structural and functional similarities. Gene and motif structure analysis of AsPYLs revealed that members of each subfamily share similar gene and motif structure. Segmental duplication appears to be the driving force for the expansion of PYLs, Furthermore, stress-responsive AsPYLs were detected through RNA-seq analysis. The qRT-PCR analysis of 10 AsPYL genes under drought, salt, and ABA stress revealed that AsPYL genes play an important role in stress response. These data provide a reference for further studies on the oat PYL gene family and its function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Avena/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Phylogeny , Carrier Proteins/genetics
4.
Genes (Basel) ; 13(10)2022 10 21.
Article in English | MEDLINE | ID: mdl-36292803

ABSTRACT

The WRKY family is widely involved in the regulation of plant growth and stress response and is one of the largest gene families related to plant environmental adaptation. However, no systematic studies on the WRKY family in oat (Avena sativa L.) have been conducted to date. The recently published complete genome sequence of oat enables the systematic analysis of the AsWRKYs. Based on a genome-wide study of oat, we identified 162 AsWRKYs that were unevenly distributed across 21 chromosomes; a phylogenetic tree of WRKY domains divided these genes into three groups (I, II, and III). We also analyzed the gene duplication events and identified a total of 111 gene pairs that showed strong purifying selection during the evolutionary process. Surprisingly, almost all genes evolved after the completion of subgenomic differentiation of hexaploid oat. Further studies on the functional analysis indicated that AsWRKYs were widely involved in various biological processes. Notably, expression patterns of 16 AsWRKY genes revealed that the response of AsWRKYs were affected by stress level and time. In conclusion, this study provides a reference for further analysis of the role of WRKY transcription factors in species evolution and functional differentiation.


Subject(s)
Avena , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Avena/genetics , Avena/metabolism , Gene Expression Regulation, Plant/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study
5.
Protoplasma ; 254(6): 2083-2094, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28321653

ABSTRACT

Drought stress occurs frequently and severely as a result of global climate change, and it exerts serious effects on plants. 5-Aminolevulinic acid (5-ALA) plays a crucial role in conferring abiotic stress tolerance in plants. To enhance the drought tolerance of turfgrass and investigate the effects of 5-ALA on antioxidant metabolism and gene expression under drought stress conditions, exogenous 5-ALA was applied by foliar spraying before Kentucky bluegrass (Poa pratensis L.) seedlings were exposed to drought [induced by 10% polyethylene glycol (PEG)] stress for 20 days. 5-ALA pretreatment increased turf quality (TQ) and leaf relative water content (RWC) while reducing reactive oxygen species (ROS) production including H2O2 content and O2•- generation rate, lipoxygenase (LOX) activity, and malondialdehyde (MDA) content under drought stress. 5-ALA pretreatment maintained ascorbate (AsA) and glutathione (GSH) contents and the ASA/DHA and GSH/GSSG ratios at high levels, and it enhanced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), which are crucial for scavenging drought-induced ROS. In addition, 5-ALA upregulated the relative expression levels of Cu/ZnSOD, APX, GPX, and DHAR but downregulated those of CAT and GR under drought stress. These results indicated that the application of 5-ALA might improve turfgrass quality and promote drought tolerance in Kentucky bluegrass through reducing oxidative damage and increasing non-enzyme antioxidant levels and antioxidant enzyme activity at transcriptional and posttranscriptional levels.


Subject(s)
Levulinic Acids/pharmacology , Poa/metabolism , Seedlings/metabolism , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Droughts , Glutathione Reductase/metabolism , Lipid Peroxidation , Oxidative Stress , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Poa/drug effects , Poa/growth & development , Reactive Oxygen Species , Seedlings/drug effects , Seedlings/growth & development , Aminolevulinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...