Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 8: 778346, 2021.
Article in English | MEDLINE | ID: mdl-34977079

ABSTRACT

Purpose: To characterize the sex- and age-related alterations of the macular vascular geometry in a population of healthy eyes using fundus photography. Methods: A cross-sectional study was conducted with 610 eyes from 305 healthy subjects (136 men, 169 women) who underwent fundus photography examination and was divided into four age groups (G1 with age ≤ 25 years, G2 with age 26-35 years, G3 with age 36-45 years, and G4 with age ≥ 46 years). A self-developed automated retinal vasculature analysis system allowed segmentation and separate multiparametric quantification of the macular vascular network according to the Early Treatment Diabetic Retinopathy Study (ETDRS). Vessel fractal dimension (Df), vessel area rate (VAR), average vessel diameter (Dm), and vessel tortuosity (τn) were acquired and compared between sex and age groups. Results: There was no significant difference between the mean age of male and female subjects (32.706 ± 10.372 and 33.494 ± 10.620, respectively, p > 0.05) and the mean age of both sexes in each age group (p > 0.05). The Df, VAR, and Dm of the inner ring, the Df of the outer ring, and the Df and VAR of the whole macula were significantly greater in men than women (p < 0.001, p < 0.001, p < 0.05, respectively). There was no significant change of τn between males and females (p > 0.05). The Df, VAR, and Dm of the whole macula, the inner and outer rings associated negatively with age (p < 0.001), whereas the τn showed no significant association with age (p > 0.05). Comparison between age groups observed that Df started to decrease from G2 compared with G1 in the inner ring (p < 0.05) and Df, VAR, and Dm all decreased from G3 compared with the younger groups in the whole macula, inner and outer rings (p < 0.05). Conclusion: In the healthy subjects, macular vascular geometric parameters obtained from fundus photography showed that Df, VAR, and Dm are related to sex and age while τn is not. The baseline values of the macular vascular geometry were also acquired for both sexes and all age groups.

2.
Gene ; 561(1): 68-75, 2015 Apr 25.
Article in English | MEDLINE | ID: mdl-25680292

ABSTRACT

The insulin-like androgenic gland hormone (IAG) gene in crustaceans plays an important role in male sexual differentiation, metabolism, and growth. However, the upstream regulation of IAG signaling schemes remains poorly studied. In the present study, we cloned the 5' flanking sequence of IAG and full-length genomic sequences of gonad-inhibiting hormone (Mn-GIH), molt-inhibiting hormone (Mn-MIH) and crustacean hyperglycemic hormone (Mn-CHH) in Macrobrachium nipponense. We identified the transcription factor-binding sites in the 5' flanking sequence of IAG and investigated the exon-intron patterns of the three CHH superfamily genes. Each CHH superfamily gene consisted of two introns separating three exons. Mn-GIH and Mn-MIH shared the same intron insertion sites, which differed from Mn-CHH. We provided DNA-level evidence for the type definition. We also identified two cAMP response elements in the 5' untranslated region. We further investigated the regulatory relationships between Mn-GIH, Mn-MIH, and Mn-CHH and IAG at the transcriptional level by injection of double-stranded RNA (dsRNA). IAG transcription levels were significantly increased to 660.2%, 472.9%, and 112.4% of control levels in the Mn-GIH dsRNA, Mn-MIH dsRNA, and Mn-CHH dsRNA groups, respectively. The results clearly demonstrated that Mn-GIH and Mn-MIH, but not Mn-CHH, negatively regulate the expression of the IAG gene.


Subject(s)
Arthropod Proteins/genetics , Carrier Proteins/genetics , Gonadal Hormones/genetics , Invertebrate Hormones/genetics , Nerve Tissue Proteins/genetics , Palaemonidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Binding Sites/genetics , Cloning, Molecular , Cyclic AMP Response Element-Binding Protein/genetics , Eye/cytology , Gene Expression Regulation , Male , Molecular Sequence Data , Palaemonidae/embryology , Palaemonidae/growth & development , RNA Interference , RNA, Small Interfering , Sequence Alignment , Sequence Analysis, DNA , Sex Differentiation/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...