Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Proteomics ; 270: 104745, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36220543

ABSTRACT

Grain length is one of the most important rice grain appearance components. To better understand the protein regulated by grain length in indica rice, the tandem mass tag (TMT) labeling combined with LC-MS/MS analysis was used for quantitative identification of differentially regulated proteins by comparing six long-grain cultivars (MeiB, LongfengB, YexiangB, FengtianB, WantaiB, and DingxiangB) to the short-grain cultivar BoB, respectively. A total of 6622 proteins were detected for quantitative analysis by comparing protein content of six long-grain cultivars to the short-grain cultivar, and 715 proteins were significantly regulated, consisting of 336 uniquely over-accumulated proteins and 355 uniquely down-accumulated proteins. KEGG pathway analysis revealed that most of accumulated proteins are involved in metabolic pathways, biosynthesis of secondary metabolites and phenylpropanoid biosynthesis. Four down-accumulated proteins maybe involved in the signaling pathways for grain length regulation. LC-PRM/MS quantitative analysis was used to analyze 10 differentially expressed proteins. The results were almost consistent with the TMT quantitative analysis. qRT-PCR analysis results showed that the transcription level was not always parallel to the protein content. This study identified many novel grain length accumulated proteins through the quantitative proteomics approach, providing candidate genes for further study of grain size regulatory mechanisms. SIGNIFICANCE: Rice grain length is one of the most important characteristics influencing appearance and yield. Six long-grain cultivars (MeiB, LongfengB, YexiangB, FengtianB, WantaiB, and DingxiangB obtained in Guangxi province of China from the 2000s to 2020s) and one short-grain cultivar (BoB obtained in Guangxi province of China in 1980s) were used for comparative analyses. Totally, 715 differentially expressed proteins (DEPs) were identified using TMT-base proteomic analysis. The numbers of DEPs increased as the grain length increased. 4 DEPs may be related to rice's signaling pathways for grain size regulation. A total of 85 DEPs regulated in at least four long-grain cultivars compared with the short-grain cultivar BoB, and 7 proteins were over-accumulated, and 3 proteins were down-accumulated in six long-grain cultivars. These findings provide valuable information to better understand the mechanisms of protein regulation by grain length in rice.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Proteomics/methods , Chromatography, Liquid , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Tandem Mass Spectrometry , China , Edible Grain/metabolism , Signal Transduction
2.
Breed Sci ; 72(2): 150-168, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36275934

ABSTRACT

Low temperature is one of the important environmental factors that affect rice growth and yield. To better understand the japonica rice responses to cold stress, isobaric tags for a relative and absolute quantification (iTRAQ) labeling-based quantitative proteomics approach was used to detected changes in protein levels. Two-week-old seedlings of the cold tolerant rice variety Kongyu131 were treated at 8°C for 24, 48 and 72 h, then the total proteins were extracted from tissues and used for quantitative proteomics analysis. A total of 5082 proteins were detected for quantitative analysis, of which 289 proteins were significantly regulated, consisting of 169 uniquely up-regulated proteins and 125 uniquely down-regulated proteins in cold stress groups relative to the control group. Functional analysis revealed that most of the regulated proteins are involved in photosynthesis, metabolic pathway, biosynthesis of secondary metabolites and carbon metabolism. Western blot analysis showed that protein regulation was consistent with the iTRAQ data. The corresponding genes of 25 regulated proteins were used for quantitative real time PCR analysis, and the results showed that the mRNA level was not always parallel to the corresponding protein level. The importance of our study is that it provides new insights into cold stress responses in rice with respect to proteomics and provides candidate genes for cold-tolerance rice breeding.

3.
Front Genet ; 13: 887217, 2022.
Article in English | MEDLINE | ID: mdl-35783267

ABSTRACT

The NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) gene family plays a critical role in plant development. However, our understanding of the mechanisms of how NB-ARC genes regulate plant development in the plant panicle is still limited. Here, we subjected 258 NB-ARC genes in rice to genome-wide analysis to characterize their structure, function, and expression patterns. The NB-ARC genes were classified into three major groups, and group II included nine subgroups. Evolutionary analysis of NB-ARC genes in a dicotyledon plant (Arabidopsis thaliana) and two monocotyledonous plants (Oryza sativa L. and Triticum aestivum) indicated that homologous genome segments were conserved in monocotyledons and subjected to weak positive selective pressure during evolution. Dispersed and proximal replication events were detected. Expression analysis showed expression of most NB-ARC genes in roots, panicles, and leaves, and regulation at the panicle development stage in rice Ce253. The GNP12 gene encodes RGH1A protein, which regulates rice yield according to panicle length, grain number of panicle, and grain length, with eight major haplotypes. Most members of NB-ARC protein family are predicted to contain P-loop conserved domains and localize on the membrane. The results of this study will provide insight into the characteristics and evolution of NB-ARC family and suggest that GNP12 positively regulates panicle development.

4.
Plant J ; 107(4): 1084-1101, 2021 08.
Article in English | MEDLINE | ID: mdl-34101285

ABSTRACT

Bacterial leaf streak (BLS) is a major bacterial disease of rice. Utilization of host genetic resistance has become one of the most important strategies for controlling BLS. However, only a few resistance genes have been characterized. Previously, a recessive BLS resistance gene bls1 was roughly mapped on chromosome 6. Here, we further delineated bls1 to a 21 kb region spanning four genes. Genetic analysis confirmed that the gene encoding a mitogen-activated protein kinase (OsMAPK6) is the target of the allelic genes BLS1 and bls1. Overexpression of BLS1 weakened resistance to the specific Xanthomonas oryzae pv. oryzicola (Xoc) strain JZ-8, while low expression of bls1 increased resistance. However, both overexpression of BLS1 and low expression of bls1 could increase no-race-specific broad-spectrum resistance. These results indicate that BLS1 and bls1 negatively regulate race-specific resistance to Xoc strain JZ-8 but positively and negatively control broad-spectrum resistance, respectively. Subcellular localization demonstrated that OsMAPK6 was localized in the nucleus. RGA4, which is known to mediate resistance to Xoc, is the potential target of OsMAPK6. Overexpression of BLS1 and low expression of bls1 showed increase in salicylic acid and induced expression of defense-related genes, simultaneously increasing broad-spectrum resistance. Moreover, low expression of bls1 showed increase an in jasmonic acid and abscisic acid, in company with an increase in resistance to Xoc strain JZ-8. Collectively, our study provides new insights into the understanding of BLS resistance and facilitates the development of rice host-resistant cultivars.


Subject(s)
Mitogen-Activated Protein Kinase 6/genetics , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Abscisic Acid/metabolism , Chromosome Mapping , Cyclopentanes/metabolism , Disease Resistance , Gene Expression Regulation, Plant , Host-Pathogen Interactions/physiology , Mitogen-Activated Protein Kinase 6/metabolism , Mutation , Oryza/genetics , Oxylipins/metabolism , Phylogeny , Plant Diseases/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Xanthomonas/pathogenicity
5.
BMC Plant Biol ; 20(1): 371, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32762649

ABSTRACT

BACKGROUND: Low temperature is a limiting factor of rice productivity and geographical distribution. Wild rice (Oryza rufipogon Griff.) is an important germplasm resource for rice improvement. It has superior tolerance to many abiotic stresses, including cold stress, but little is known about the mechanism underlying its resistance to cold. RESULTS: This study elucidated the molecular genetic mechanisms of wild rice in tolerating low temperature. Comprehensive transcriptome profiles of two rice genotypes (cold-sensitive ce 253 and cold-tolerant Y12-4) at the germinating stage under cold stress were comparatively analyzed. A total of 42.44-68.71 million readings were obtained, resulting in the alignment of 29,128 and 30,131 genes in genotypes 253 and Y12-4, respectively. Many common and differentially expressed genes (DEGs) were analyzed in the cold-sensitive and cold-tolerant genotypes. Results showed more upregulated DEGs in the cold-tolerant genotype than in the cold-sensitive genotype at four stages under cold stress. Gene ontology enrichment analyses based on cellular process, metabolic process, response stimulus, membrane part, and catalytic activity indicated more upregulated genes than downregulated ones in the cold-tolerant genotype than in the cold-sensitive genotype. Quantitative real-time polymerase chain reaction was performed on seven randomly selected DEGs to confirm the RNA Sequencing (RNA-seq) data. These genes showed similar expression patterns corresponding with the RNA-Seq method. Weighted gene co-expression network analysis (WGCNA) revealed Y12-4 showed more positive genes than 253 under cold stress. We also explored the cold tolerance gene LTG5 (Low Temperature Growth 5) encoding a UDP-glucosyltransferase. The overexpression of the LTG5 gene conferred cold tolerance to indica rice. CONCLUSION: Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.


Subject(s)
Cold-Shock Response/genetics , Germination/genetics , Glucosyltransferases/genetics , Oryza/enzymology , Oryza/genetics , Seeds/genetics , Cloning, Molecular , Cold Temperature , Gene Expression Profiling , Gene Library , Gene Ontology , Gene Regulatory Networks , Genes, Plant , Glucosyltransferases/metabolism , High-Throughput Nucleotide Sequencing , Metabolic Networks and Pathways , Oryza/growth & development , Phenotype , RNA-Seq , Real-Time Polymerase Chain Reaction , Seeds/enzymology , Seeds/growth & development
6.
BMC Plant Biol ; 20(1): 193, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32375632

ABSTRACT

BACKGROUND: Nitrogen (N) is a major nutrient element for crop growth. In plants, the members of the peptide transporter (PTR) gene family may involve in nitrate uptake and transport. Here, we identified PTR gene family in rice and analyzed their expression profile in near-isogenic lines. RESULTS: We identified 96, 85 and 78 PTR genes in Nipponbare, R498 and Oryza glaberrima, and the phylogenetic trees were similar in Asian cultivated rice and African cultivated rice. The number of PTR genes was higher in peanut (125) and soybean (127). The 521 PTR genes in rice, maize, sorghum, peanut, soybean and Arabidopsis could be classified into 4 groups, and their distribution was different between monocots and dicots. In Nipponbare genome, the 25 PTR genes were distributed in 5 segmental duplication regions on chromosome 1, 2, 3, 4, 5, 7, 8, 9, and 10. The PTR genes in rice have 0-11 introns and 1-12 exons, and 16 of them have the NPF (NRT1/PTR family) domain. The results of RNA-seq showed that the number of differentially expressed genes (DEGs) between NIL15 and NIL19 at three stages were 928, 1467, and 1586, respectively. Under low N conditions, the number of differentially expressed PTR genes increased significantly. The RNA-seq data was analyzed using WGCNA to predict the potential interaction between genes. We classified the genes with similar expression pattern into one module, and obtained 25 target modules. Among these modules, three modules may be involved in rice N uptake and utilization, especially the brown module, in which hub genes were annotated as protein kinase that may regulate rice N metabolism. CONCLUSIONS: In this study, we comprehensively analyzed the PTR gene family in rice. 96 PTR genes were identified in Nippobare genome and 25 of them were located on five large segmental duplication regions. The Ka/Ks ratio indicated that many PTR genes had undergone positive selection. The RNA-seq results showed that many PTR genes were involved in rice nitrogen use efficiency (NUE), and protein kinases might play an important role in this process. These results provide a fundamental basis to improve the rice NUE via molecular breeding.


Subject(s)
Membrane Transport Proteins/metabolism , Nitrogen/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Chromosome Mapping , Chromosomes, Plant , Gene Duplication , Gene Regulatory Networks , Genome, Plant , Genome-Wide Association Study , Membrane Transport Proteins/genetics , Oryza/genetics , Phylogeny , Plant Proteins/genetics , Transcriptome
7.
Int J Mol Sci ; 20(18)2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31487931

ABSTRACT

The anthocyanin biosynthesis of rice is a major concern due to the potential nutritional value. Purple appears in various organs and tissues of rice such as pericarp, flower organs, leaves, leaf sheaths, internodes, ligules, apex, and stigma. At present, there are many studies on the color of rice pericarp, but the gene and mechanism of other organs such as leaves are still unclear, and the gene regulatory network of specific organ coloring has not been systematically understood. In this study, genetic analysis demonstrated that the purple leaf traits of rice were regulated by a recessive gene. The green leaf cultivar Y58S and purple leaf cultivar XianHongB were used to construct the mapping population. A set of near isogenicline (NIL) (BC3F1) was bred via crossing and back-crossing. The generations of BC3F2 appeared to separate four phenotypes, pl1, pl2, pl3, and pl4, due to the occurrence of a purple color in different organs. We constructed three bulked segregant analysis (BSA) pools (pl1-pl2, pl1-pl3, and pl1-pl4) by using the separated generations of BC3F5 and mapped the purple leaf gene plr4 to the vicinity of 27.9-31.1 Mb on chromosome 4. Subsequently, transcriptome sequencing (RNA-Seq) for pl3 and pl2 was used to analyze the differentially expressed genes in the localization interval, where 12 unigenes exhibited differential expression in which two genes (Os04g0577800, Os04g0616400) were downregulated. The two downregulated genes (Os04g0577800 and Os04g0616400) are possible candidate genes because of the recessive genetic characteristics of the purple leaf genes. These results will facilitate the cloning of plr4 and illustrate the molecular mechanisms of the anthocyanin synthesis pathway.


Subject(s)
Anthocyanins/genetics , Oryza/genetics , Plant Proteins/genetics , Transcriptome , Anthocyanins/biosynthesis , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism
8.
Breed Sci ; 69(1): 40-46, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31086482

ABSTRACT

The brown planthopper (BPH) is a serious insect pest of rice and a substantial threat to rice production. Identification of new BPH resistance genes and their transfer into modern rice cultivars are effective breeding approaches to reduce the damage caused by BPH. In this study, we mapped a BPH resistance gene to a 50-kb genomic interval between two InDel markers 4M03980 and 4M04041 on the short arm of chromosome 4 in indica rice cultivar BP60, where the BPH resistance gene was mapped in Rathu Heenati by Liu et al. (2015) and named "Bph3". This region contains two annotated genes Os04g0201900 and Os04g0202300, which encode lectin receptor kinases responsible for BPH resistance. We also developed a molecular marker "MM28T" for Bph3, and introgression Bph3 into susceptible rice restorer lines Guihui582 and Gui7571 by the marker-assisted selection (MAS) approach. The BPH resistance level is significantly enhanced in the Bph3-introgression lines, the resistance scores decrease from 8.2 to 3.6 for Guihui582 and decrease from 8.7 to around 3.8 for Gui7571. Therefore, developing molecular markers for the BPH resistance gene Bph3 and using them for molecular breeding will facilitate the creation of BPH-resistance rice cultivars to reduce damage caused by BPH.

10.
PLoS One ; 13(5): e0196690, 2018.
Article in English | MEDLINE | ID: mdl-29746484

ABSTRACT

Rice is an important cereal in the world. The study of the genetic basis of important agronomic traits in rice landraces and identification of genes will facilitate the breed improvement. Gelatinization temperature (GT), gel consistency (GC) and pericarp color (PC) are important indices of rice cooking and eating quality evaluation and potential nutritional importance, which attract wide attentions in the application of genetic and breeding. To dissect the genetic basis of GT, GC and PC, a total of 419 rice landraces core germplasm collections consisting of 330 indica lines, 78 japonica lines and 11 uncertain varieties were planted, collected, then GT, GC, PC were measured for two years, and sequenced using specific-locus amplified fragment sequencing (SLAF-seq) technology. In this study, 261,385,070 clean reads and 56,768 polymorphic SLAF tags were obtained, which a total of 211,818 single nucleotide polymorphisms (SNPs) were discovered. With 208,993 SNPs meeting the criterion of minor allele frequency (MAF) > 0.05 and integrity> 0.5, the phylogenetic tree and population structure analysis were performed for all 419 rice landraces, and the whole panel mainly separated into six subpopulations based on population structure analysis. Genome-wide association study (GWAS) was carried out for the whole panel, indica subpanel and japonica subpanel with subset SNPs respectively. One quantitative trait locus (QTL) on chromosome 6 for GT was detected in the whole panel and indica subpanel, and one QTL associated with GC was located on chromosome 6 in the whole panel and indica subpanel. For the PC trait, 8 QTLs were detected in the whole panel on chromosome 1, 3, 4, 7, 8, 10 and 11, and 7 QTLs in the indica subpanel on chromosome 3, 4, 7, 8, 10 and 11. For the three traits, no QTL was detected in japonica subpanel, probably because of the polymorphism repartition between the subpanel, or small population size of japonica subpanel. This paper provides new gene resources and insights into the molecular mechanisms of important agricultural trait of rice phenotypic variation and genetic improvement of rice quality variety breeding.


Subject(s)
Chromosomes, Plant/genetics , Gels/metabolism , Genes, Plant/genetics , Oryza/genetics , Breeding/methods , Chromosome Mapping/methods , Color , Food , Gene Frequency/genetics , Genome-Wide Association Study/methods , Phylogeny , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...