Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Small ; : e2401134, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816761

ABSTRACT

Strain engineering has been widely used to optimize platinum-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs). PtM3 (M is base metals), a well-known high-compressive-strain intermetallic alloy, shows promise as a low platinum ORR catalyst due to high intrinsic activity. However, during the alloying of Pt with a threefold amount of M, a notable phase separation between Pt and M may occur, with M particles rapidly sintering while Pt particles grow slowly, posing a challenge in achieving a well-defined PtM3 intermetallic alloy. Here, an entropy-driven Ostwald ripening reversal phenomenon is discovered that enables the synthesis of small-sized Pt(FeCoNiCu)3 intermetallic ORR catalysts. High entropy promotes the thermodynamic driving force for the alloying Pt with M, which triggers the Ostwald ripening reversal of sintered FeCoNiCu particles and facilitates the formation of uniform Pt(FeCoNiCu)3 intermetallic catalysts. The prepared Pt(FeCoNiCu)3 catalysts exhibit a high specific activity of 3.82 mA cm-2, along with a power density of ≈1.3 W cm-2 at 0.67 V and 94 °C with a cathode Pt loading of 0.1 mg cm-2 in H2-air fuel cell.

2.
J Am Chem Soc ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592685

ABSTRACT

The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g., support, metal surface, and metal-support interface) still presents a big challenge. In particular, many studies have demonstrated that metal-support interfaces could also act as the primary active sites in catalytic reactions, which is well elucidated in oxide-supported metal nanocatalysts but is rarely reported in carbon-supported metal nanocatalysts. Here, we fill the above gap and demonstrate that metal-sulfur interfaces in sulfur-doped carbon-supported metal nanocatalysts are the primary active sites for several catalytic hydrogenation reactions. A series of metal nanocatalysts with similar sizes but different amounts of metal-sulfur interfaces were first constructed and characterized. Taking Ir for quinoline hydrogenation as an example, it was found that their catalytic activities were proportional to the amount of the Ir-S interface. Further experiments and density functional theory (DFT) calculations suggested that the adsorption and activation of quinoline occurred on the Ir atoms at the Ir-S interface. Similar phenomena were found in p-chloronitrobenzene hydrogenation over the Pt-S interface and benzoic acid hydrogenation over the Ru-S interface. All of these findings verify the predominant activity of metal-sulfur interfaces for catalytic hydrogenation reactions and contribute to the comprehensive understanding of metal-support interfaces in supported nanocatalysts.

3.
Nano Lett ; 24(18): 5578-5584, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38682925

ABSTRACT

The lattice parameter of platinum-based intermetallic compounds (IMCs), which correlates with the intrinsic activity of the oxygen reduction reaction (ORR), can be modulated by crystal phase engineering. However, the controlled preparation of IMCs with unconventional crystal structures remains highly challenging. Here, we demonstrate the synthesis of carbon-supported PtCu-based IMC catalysts with an unconventional L10 structure by a composition-regulated strategy. Experiment and machine learning reveal that the thermodynamically favorable structure changes from L11 to L10 when slight Cu atoms are substituted with Co. Benefiting from crystal-phase-induced strain enhancement, the prepared L10-type PtCu0.8Co0.2 catalyst exhibits much-enhanced mass and specific activities of 1.82 A mgPt-1 and 3.27 mA cmPt-2, which are 1.91 and 1.73 times higher than those of the L11-type PtCu catalyst, respectively. Our work highlights the important role of crystal phase in determining the surface strain of IMCs, and opens a promising avenue for the rational preparation of IMCs with different crystal phases by doping.

4.
J Phys Chem Lett ; 15(16): 4501-4507, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38634716

ABSTRACT

The fine-tuning of the geometric and electronic structures of active sites plays a crucial role in catalysis. However, the intricate entanglement between the two aspects results in a lack of interpretable design for active sites, posing a challenge in developing high-performance catalysts. Here, we find that surface reconstruction induced by phase transition in intermetallic alloys enables synergistic geometric and electronic structure modulation, creating a desired active site microenvironment for propane dehydrogenation. The resulting electron-rich four-coordinate Rh1 site in the RhGe0.5Ga0.5 intermetallic alloy can accelerate the desorption of propylene and suppress the side reaction and thus exhibits a propylene selectivity of ∼98% with a low deactivation constant of 0.002 h-1 under propane dehydrogenation at 550 °C. Furthermore, we design a computational workflow to validate the rationality of the microenvironment modulation induced by the phase transition in an intermetallic alloy.

5.
Environ Health Perspect ; 132(4): 47008, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38625811

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are widely detected in pregnant women and associated with adverse outcomes related to impaired placental function. Human chorionic gonadotropin (hCG) is a dimeric glycoprotein hormone that can indicate placental toxicity. OBJECTIVES: Our aim was to quantify the association of serum PFAS with placental hCG, measured as an intact molecule (hCG), as free alpha-(hCGα) and beta-subunits (hCGß), and as a hyperglycosylated form (h-hCG), and evaluate effect measure modification by social determinants and by fetal sex. METHODS: Data were collected from 326 pregnant women enrolled from 2015 to 2019 in the UPSIDE study in Rochester, New York. hCG forms were normalized for gestational age at the time of blood draw in the first trimester [multiple of the median (MoM)]. Seven PFAS were measured in second-trimester maternal serum. Multivariate imputation by chained equations and inverse probability weighting were used to evaluate robustness of linear associations. PFAS mixture effects were estimated by Bayesian kernel machine regression. RESULTS: Perfluorohexane sulfonic acid (PFHxS) [hCGß: 0.29 log MoM units per log PFHxS; 95% confidence interval (CI): 0.08, 0.51] and perfluorodecanoic acid (PFDA) (hCG: -0.09; 95% CI: -0.16, -0.02) were associated with hCG in the single chemical and mixture analyses. The PFAS mixture was negatively associated with hCGα and positively with hCGß. Subgroup analyses revealed that PFAS associations with hCG differed by maternal race/ethnicity and education. Perfluoropentanoic acid (PFPeA) was associated with hCGß only in Black participants (-0.23; 95% CI: -0.37, -0.09) and in participants with high school education or less (-0.14; 95% CI: -0.26, -0.02); conversely, perfluorononanoic acid (PFNA) was negatively associated with hCGα only in White participants (-0.15; 95% CI: -0.27, -0.03) and with hCGß only in participants with a college education or greater (-0.19; 95% CI: -0.36, -0.01). These findings were robust to testing for selection bias, confounding bias, and left truncation bias where PFAS detection frequency was <100%. Two associations were negative in male (and null in female) pregnancies: Perfluoroundecanoic acid (PFUnDA) with hCGα, and PFNA with h-hCG. CONCLUSIONS: Evidence was strongest for the association between PFHxS and PFDA with hCG in all participants and for PFPeA and PFNA within subgroups defined by social determinants and fetal sex. PFAS mixture associations with hCGα and hCGß differed, suggesting subunit-specific types of toxicity and/or regulation. Future studies will evaluate the biological, clinical and public health significance of these findings. https://doi.org/10.1289/EHP12950.


Subject(s)
Alkanesulfonic Acids , Decanoic Acids , Environmental Pollutants , Fatty Acids , Fluorocarbons , Pentanoic Acids , Humans , Female , Male , Pregnancy , Placenta , New York/epidemiology , Bayes Theorem , Chorionic Gonadotropin
6.
Chem Commun (Camb) ; 60(31): 4226-4229, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38526318

ABSTRACT

We introduce a straightforward, yet effective strategy to combat the performance decline of proton-exchange membrane fuel cells in low-humidity environments. Our method centers on air-oxidizing carbon supports, significantly improving proton and oxygen transport within the cathode catalyst layer.

7.
Nat Commun ; 15(1): 415, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195668

ABSTRACT

Carbon supported PtCo intermetallic alloys are known to be one of the most promising candidates as low-platinum oxygen reduction reaction electrocatalysts for proton-exchange-membrane fuel cells. Nevertheless, the intrinsic trade-off between particle size and ordering degree of PtCo makes it challenging to simultaneously achieve a high specific activity and a large active surface area. Here, by machine-learning-accelerated screenings from the immense configuration space, we are able to statistically quantify the impact of chemical ordering on thermodynamic stability. We find that introducing of Cu/Ni into PtCo can provide additional stabilization energy by inducing Co-Cu/Ni disorder, thus facilitating the ordering process and achieveing an improved tradeoff between specific activity and active surface area. Guided by the theoretical prediction, the small sized and highly ordered ternary Pt2CoCu and Pt2CoNi catalysts are experimentally prepared, showing a large electrochemically active surface area of ~90 m2 gPt‒1 and a high specific activity of ~3.5 mA cm‒2.

8.
Angew Chem Int Ed Engl ; 63(1): e202314833, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37994382

ABSTRACT

N-, C-, O-, S-coordinated single-metal-sites (SMSs) have garnered significant attention due to the potential for significantly enhanced catalytic capabilities resulting from charge redistribution. However, significant challenges persist in the precise design of well-defined such SMSs, and the fundamental comprehension has long been impeded in case-by-case reports using carbon materials as investigation targets. In this work, the well-defined molecular catalysts with N3 C1 -anchored SMSs, i.e., N-confused metalloporphyrins (NCPor-Ms), are calculated for their catalytic oxygen reduction activity. Then, NCPor-Ms with corresponding N4 -anchored SMSs (metalloporphyrins, Por-Ms), are synthesized for catalytic activity evaluation. Among all, NCPor-Co reaches the top in established volcano plots. NCPor-Co also shows the highest half-wave potential of 0.83 V vs. RHE, which is much better than that of Por-Co (0.77 V vs. RHE). Electron-rich, low band gap and regulated d-band center contribute to the high activity of NCPor-Co. This study delves into the examination of well-defined asymmetric SMS molecular catalysts, encompassing both theoretical and experimental facets. It serves as a pioneering step towards enhancing the fundamental comprehension and facilitating the development of high-performance asymmetric SMS catalysts.

9.
Mol Cell Endocrinol ; 581: 112075, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37852527

ABSTRACT

The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.


Subject(s)
Fetus , Placenta , Infant, Newborn , Pregnancy , Humans , Female , Pregnancy Trimester, First , Biomarkers , Gestational Age
10.
J Am Chem Soc ; 145(44): 24126-24135, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37867298

ABSTRACT

Single-atom catalysts (SACs) have generated excitement for their potential to downsize metal particles to the atomic limit with engineerable local environments and improved catalytic reactivities and selectivities. However, successes have been limited to small-molecule transformations with little progress toward targeting complex-building reactions, such as metal-catalyzed cross-coupling. Using a supercritical carbon-dioxide-assisted protocol, we report a heterogeneous single-atom Pt-catalyzed Heck reaction, which provides the first C-C bond-forming migratory insertion on SACs. Our quantum mechanical computations establish the reaction mechanism to involve a novel C-rich coordination site (i.e., PtC4) that demonstrates an unexpected base effect. Notably, the base was found to transiently modulate the coordination environment to allow migratory insertion into an M-C species, a process with a high steric impediment with no previous example on SACs. The studies showcase how SACs can introduce coordination structures that have remained underexplored in catalyst design. These findings offer immense potential for transferring the vast and highly versatile reaction manifold of migratory-insertion-based bond-forming protocols to heterogeneous SACs.

11.
Biomaterials ; 302: 122323, 2023 11.
Article in English | MEDLINE | ID: mdl-37717405

ABSTRACT

Cancer stem cells (CSCs) are crucial for tumorigenesis, metastasis, and therapy resistance in esophageal squamous cell carcinoma (ESCC). To further elucidate the mechanism underlying characteristics of CSCs and develop CSCs-targeted therapy, an efficient culture system that could expand and maintain CSCs is needed. CSCs reside in a complex tumor microenvironment, and three-dimensional (3D) culture systems of biomimetic scaffolds are expected to better support the growth of CSCs by recapitulating the biophysical properties of the extracellular matrix (ECM). Here, we established gelatin-based 3D biomimetic scaffolds mimicking the stiffness and collagen content of ESCC, which could enrich ESCC CSCs efficiently. Biological changes of ESCC cells laden in scaffolds with three different viscoelasticity emulating physiological stiffness of esophageal tissues were thoroughly investigated in varied aspects such as cell morphology, viability, cell phenotype markers, and transcriptomic profiling. The results demonstrated the priming effects of viscoelasticity on the stemness of ESCC. The highly viscous scaffolds (G': 6-403 Pa; G'': 2-75 Pa) better supported the enrichment of ESCC CSCs, and the TGF-beta signaling pathway might be involved in regulating the stemness of ESCC cells. Compared to two-dimensional (2D) cultures, highly viscous scaffolds significantly promoted the clonal expansion of ESCC cells in vitro and tumor formation ability in vivo. Our findings highlight the crucial role of biomaterials' viscoelasticity for the 3D culture of ESCC CSCs in vitro, and this newly-established culture system represents a valuable platform to support their growth, which could facilitate the CSCs-targeted therapy in the future.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/therapy , Gelatin/pharmacology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Biomimetics , Cell Line, Tumor , Neoplastic Stem Cells/pathology , Tumor Microenvironment
12.
Nat Commun ; 14(1): 5896, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37736762

ABSTRACT

Carbon supported intermetallic compound nanoparticles with high activity and stability are promising cathodic catalysts for oxygen reduction reaction in proton-exchange-membrane fuel cells. However, the synthesis of intermetallic catalysts suffers from large diffusion barrier for atom ordering, resulting in low ordering degree and limited performance. We demonstrate a low-melting-point metal doping strategy for the synthesis of highly ordered L10-type M-doped PtCo (M = Ga, Pb, Sb, Cu) intermetallic catalysts. We find that the ordering degree of the M-doped PtCo catalysts increases with the decrease of melting point of M. Theoretic studies reveal that the low-melting-point metal doping can decrease the energy barrier for atom diffusion. The prepared highly ordered Ga-doped PtCo catalyst exhibits a large mass activity of 1.07 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a rated power density of 1.05 W cm-2 in H2-air fuel cells, with a Pt loading of 0.075 mgPt cm-2.

13.
Biomaterials ; 298: 122111, 2023 07.
Article in English | MEDLINE | ID: mdl-37141647

ABSTRACT

Hematopoietic stem cells (HSCs) are adult multipotential stem cells with the capacity to differentiate into all blood cells and immune cells, which are essential for maintaining hematopoietic homeostasis throughout the lifespan and reconstituting damaged hematopoietic system after myeloablation. However, the clinical application of HSCs is hindered by the imbalance of its self-renewal and differentiation during in vitro culture. Considering the fact that HSC fate is uniquely determined by natural bone marrow microenvironment, various elaborate cues in this hematopoietic micro-niche provide an excellent reference for the regulation of HSCs. Inspired by the bone marrow extracellular matrix (ECM) network, we designed degradable scaffolds by orchestrating the physical parameters to investigate the decoupling effects of Young's modulus and pore size of three-dimensional (3D) matrix materials on the fate of hematopoietic stem and progenitor cells (HSPCs). We ascertained that the scaffold with larger pore size (80 µm) and higher Young's modulus (70 kPa) was more favorable for HSPCs proliferation and the maintenance of stemness related phenotypes. Through in vivo transplantation, we further validated that scaffolds with higher Young's modulus were more propitious in maintaining the hematopoietic function of HSPCs. We systematically screened an optimized scaffold for HSPC culture which could significantly improve the cell function and self-renewal ability compared with traditional two-dimensional (2D) culture. Together, these results indicate the important role of biophysical cues in regulating HSC fate and pave the way for the parameter design of 3D HSC culture system.


Subject(s)
Cues , Hematopoietic Stem Cells , Bone Marrow , Hematopoiesis , Cell Differentiation , Stem Cell Niche
14.
Nat Commun ; 14(1): 2207, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072407

ABSTRACT

Limited numbers of available hematopoietic stem cells (HSCs) limit the widespread use of HSC-based therapies. Expansion systems for functional heterogenous HSCs remain to be optimized. Here, we present a convenient strategy for human HSC expansion based on a biomimetic Microniche. After demonstrating the expansion of HSC from different sources, we find that our Microniche-based system expands the therapeutically attractive megakaryocyte-biased HSC. We demonstrate scalable HSC expansion by applying this strategy in a stirred bioreactor. Moreover, we identify that the functional human megakaryocyte-biased HSCs are enriched in the CD34+CD38-CD45RA-CD90+CD49f lowCD62L-CD133+ subpopulation. Specifically, the expansion of megakaryocyte-biased HSCs is supported by a biomimetic niche-like microenvironment, which generates a suitable cytokine milieu and supplies the appropriate physical scaffolding. Thus, beyond clarifying the existence and immuno-phenotype of human megakaryocyte-biased HSC, our study demonstrates a flexible human HSC expansion strategy that could help realize the strong clinical promise of HSC-based therapies.


Subject(s)
Biomimetics , Megakaryocytes , Humans , Hematopoietic Stem Cells , Antigens, CD34 , Leukocyte Common Antigens
15.
Inorg Chem ; 62(13): 5262-5269, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36947415

ABSTRACT

Porous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry-relevant impregnation synthesis. We find that high-temperature annealing is crucial in promoting the formation of alloy particles with a stoichiometric Co/Pt ratio, which in turn is the precondition for transforming the disordered alloys to ordered intermetallic structures at a relatively low temperature. Based on the findings, we accordingly synthesize highly ordered L10-type PtCo catalysts with a remarkable ORR performance in fuel cells.

16.
Angew Chem Int Ed Engl ; 62(24): e202302819, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36972030

ABSTRACT

In supported metal catalysts, the supports would strongly interact with the metal components instead of just acting as a carrier, which greatly affects both of their synthesis and catalytic activity, selectivity, and stability. Carbon is considered as very important but inert support and thus hard to induce strong metal-support interaction (SMSI). This mini-review highlights that sulfur-a documented poison reagent for metal catalysts-when doped in a carbon supports can induce diverse SMSI phenomenon, including electronic metal-support interaction (EMSI), classic SMSI, and reactive metal-support interaction (RMSI). These SMSI between metal and sulfur-doped carbon (S-C) supports enables the catalysts with extraordinary resistance to sintering at high temperatures of up to 1100 °C, which allows the general synthesis of single-atom, alloy cluster, and intermetallic compound catalysts with high dispersion and metal loading for a variety of applications.

17.
Nat Commun ; 14(1): 997, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813796

ABSTRACT

Strategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak "non-bonding" interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO2 interaction that substantially elevates the population of Co4+ sites for improved water oxidation. We find that phenanthroline only coordinates with Co2+ forming soluble Co(phenanthroline)2(OH)2 complex in alkaline electrolytes, which can be deposited as amorphous CoOxHy film containing non-bonding phenanthroline upon oxidation of Co2+ to Co3+/4+. This in situ deposited catalyst demonstrates a low overpotential of 216 mV at 10 mA cm-2 and sustainable activity over 1600 h with Faradaic efficiency above 97%. Density functional theory calculations reveal that the presence of phenanthroline can stabilize CoO2 through the non-covalent interaction and generate polaron-like electronic states at the Co-Co center.

18.
Chem Commun (Camb) ; 59(13): 1829-1832, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36722910

ABSTRACT

Here, we report a "critical distance" method for the synthesis of 9 kinds of sub-5 nm rhodium (Rh)-based intermetallic catalysts. Enlarging the distance between intermetallic particles on high-surface-area carbon black supports could significantly suppress the metal sintering in high-temperature annealing. The prepared Rh2Sn intermetallic catalysts exhibited enhanced activity in catalyzing the hydrogenation of nitrobenzene.

19.
Nat Mater ; 22(1): 100-108, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36266572

ABSTRACT

Iridium-based electrocatalysts remain the only practical anode catalysts for proton exchange membrane (PEM) water electrolysis, due to their excellent stability under acidic oxygen evolution reaction (OER), but are greatly limited by their high cost and low reserves. Here, we report a nickel-stabilized, ruthenium dioxide (Ni-RuO2) catalyst, a promising alternative to iridium, with high activity and durability in acidic OER for PEM water electrolysis. While pristine RuO2 showed poor acidic OER stability and degraded within a short period of continuous operation, the incorporation of Ni greatly stabilized the RuO2 lattice and extended its durability by more than one order of magnitude. When applied to the anode of a PEM water electrolyser, our Ni-RuO2 catalyst demonstrated >1,000 h stability under a water-splitting current of 200 mA cm-2, suggesting potential for practical applications. Density functional theory studies, coupled with operando differential electrochemical mass spectroscopy analysis, confirmed the adsorbate-evolving mechanism on Ni-RuO2, as well as the critical role of Ni dopants in stabilization of surface Ru and subsurface oxygen for improved OER durability.

20.
J Expo Sci Environ Epidemiol ; 33(2): 264-272, 2023 03.
Article in English | MEDLINE | ID: mdl-36114292

ABSTRACT

BACKGROUND: Phthalate exposure in pregnancy is typically estimated using maternal urinary phthalate metabolite levels. Our aim was to evaluate the association of urinary and placental tissue phthalates, and to explore the role of maternal and pregnancy characteristics that may bias estimates. METHODS: Fifty pregnancies were selected from the CANDLE Study, recruited from 2006 to 2011 in Tennessee. Linear models were used to estimate associations of urinary phthalates (2nd, 3rd trimesters) and placental tissue phthalates (birth). Potential confounders and modifiers were evaluated in categories: temporality (time between urine and placenta sample), fetal sex, demographics, social advantage, reproductive history, medication use, nutrition and adiposity. Molar and quantile normalized phthalates were calculated to facilitate comparison of placental and urinary levels. RESULTS: Metabolites detectable in >80% of both urine and placental samples were MEP, MnBP, MBzP, MECPP, MEOHP, MEHHP, and MEHP. MEP was most abundant in urine (geometric mean [GM] 7.00 ×102 nmol/l) and in placental tissue (GM 2.56 ×104 nmol/l). MEHP was the least abundant in urine (GM 5.32 ×101 nmol/l) and second most abundant in placental tissue (2.04 ×104 nmol/l). In aggregate, MEHP differed the most between urine and placenta (2.21 log units), and MEHHP differed the least (0.07 log units). MECPP was positively associated between urine and placenta (regression coefficient: 0.31 95% CI 0.09, 0.53). Other urine-placenta metabolite associations were modified by measures of social advantage, reproductive history, medication use, and adiposity. CONCLUSION: Phthalates were ubiquitous in 50 full-term placental samples, as has already been shown in maternal urine. MEP and MEHP were the most abundant. Measurement and comparison of urinary and placental phthalates can advance knowledge on phthalate toxicity in pregnancy and provide insight into the validity and accuracy of relying on maternal urinary concentrations to estimate placental exposures. IMPACT STATEMENT: This is the first report of correlations/associations of urinary and placental tissue phthalates in human pregnancy. Epidemiologists have relied exclusively on maternal urinary phthalate metabolite concentrations to assess exposures in pregnant women and risk to their fetuses. Even though it has not yet been confirmed empirically, it is widely assumed that urinary concentrations are strongly and positively correlated with placental and fetal levels. Our data suggest that may not be the case, and these associations may vary by phthalate metabolite and associations may be modified by measures of social advantage, reproductive history, medication use, and adiposity.


Subject(s)
Environmental Pollutants , Phthalic Acids , Humans , Pregnancy , Female , Placenta , Phthalic Acids/urine , Pregnancy Trimesters , Obesity , Environmental Pollutants/urine , Environmental Exposure , Maternal Exposure
SELECTION OF CITATIONS
SEARCH DETAIL
...