Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Breed ; 43(3): 18, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37313300

ABSTRACT

As one of the three staple crops, nutritional traits in maize are important for human and animal nutrition. Grain quality-related traits are closely related to grain commercial value. Understanding the genetic basis of quality-related traits in maize would be helpful for breeding high-quality maize varieties. In this study, two association panels (AM122 and AM180) were subjected to genome-wide association analysis of grain quality-related traits, including protein content, oil content, starch content, and fiber content. In total, 98 SNPs (P < 1 × 10-4) were identified to be significantly associated with these four grain quality-related traits. By integrating two sets of public transcriptome data, 31 genes located in 200 kb regions flanking the associated SNP showed high expression during kernel development and were differentially expressed in two maize inbred lines, KA225 and KB035, with significantly different quality. These genes might regulate maize grain quality by participating in plant hormone processes, autophagy processes, and others. All these results could provide important reference information for breeding high­quality maize varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01360-w.

2.
Front Plant Sci ; 13: 872292, 2022.
Article in English | MEDLINE | ID: mdl-35685022

ABSTRACT

Maize grain size is the main factor determining grain yield. Dissecting the genetic basis of maize grain size may help reveal the regulatory mechanism of maize seed development and yield formation. In this study, two associated populations were used for genome-wide association analysis of kernel length, kernel width, kernel thickness, and hundred-kernel weight from multiple locations in AM122 and AM180, respectively. Then, genome-wide association mapping was performed based on the maize 6H90K SNP chip. A total of 139 loci were identified as associated with the four traits with p < 1 × 10-4 using two models (FarmCPU and MLM). The transcriptome data showed that 15 of them were expressed differentially in two maize-inbred lines KB182 (small kernel) and KB020 (big kernel) during kernel development. These candidate genes were enriched in regulating peroxidase activity, oxidoreductase, and leaf senescence. The molecular function was major in binding and catalytic activity. This study provided important reference information for exploring maize kernel development mechanisms and applying molecular markers in high-yield breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...