Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 229: 107300, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566652

ABSTRACT

BACKGROUND AND OBJECTIVE: Prenatal fetal monitoring, which can monitor the growth and health of the fetus, is very vital for pregnant women before delivery. During pregnancy, it is crucial to judge whether the fetus is abnormal, which helps obstetricians carry out early intervention to avoid fetal hypoxia and even death. At present, clinical fetal monitoring widely used fetal heart rate monitoring equipment. Fetal heart rate and uterine contraction signals obtained by fetal heart monitoring equipment are important information to evaluate fetal health status. METHODS: This paper is based on 1D-CNN (One Dimension Convolutional Neural Network) and GRU (Gate Recurrent Unit). We preprocess the obtained data and enhances them, to make the proportion of number of instances in different class in the training set is same. RESULTS: In model performance evaluation, standard evaluation indicators are used, such as accuracy, sensitivity, specificity, and ROC (receiver operating characteristic). Finally, the accuracy of our model in the test set is 95.15%, the sensitivity is 96.20%, and the specificity is 94.09%. CONCLUSIONS: In fetal heart rate monitoring, this paper proposes a 1D-CNN and bidirectional GRU hybrid models, and the fetal heart rate and uterine contraction signals given by monitoring are used as input feature to classify the fetal health status. The results show that our approach is effective in evaluating fetal health status and can assists obstetricians in clinical decision-making. And provide a baseline for the introduction of 1D-CNN and bidirectional GRU hybrid models into the evaluation of fetal health status.


Subject(s)
Cardiotocography , Neural Networks, Computer , Humans , Female , Pregnancy , Fetal Monitoring , Uterine Contraction , Heart Rate, Fetal
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4590-4594, 2022 07.
Article in English | MEDLINE | ID: mdl-36086166

ABSTRACT

Prenatal fetal monitoring, which can monitor the growth and health of the fetus, is vital for pregnant women before delivery. During pregnancy, it is essential to classify whether the fetus is abnormal, which helps physicians carry out early intervention to avoid fetal heart hypoxia and even death. Fetal heart rate and uterine contraction signals obtained by fetal heart monitoring equipment are essential to estimate fetal health status. In this paper, we pre-process the obtained data set and enhance them using Hermite interpolation on the abnormal classification in the samples. We use the 1D-CNN and GRU hybrid models to extract the abstract features of fetal heart rate and uterine contraction signals. Several evaluation metrics are used for evaluation, and the accuracy is 96 %, while the sensitivity is 95 %, and the specificity is 96 %. The experiments show the effectiveness of the proposed method, which can provide physicians and users with more stable, efficient, and convenient diagnosis and decision support.


Subject(s)
Fetal Monitoring , Heart Rate, Fetal , Female , Fetal Heart/physiology , Humans , Pregnancy , Uterine Contraction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...