Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 14(1): 13412, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862553

ABSTRACT

Previous studies have reported that the significant association between serum calcium and mortality substantially in patients, especially among those with intensive care unit (ICU). And In diabetes mellitus, congestive heart failure (CHF) is a significant comorbidity. We aim to evaluate the association between serum calcium levels and in-hospital mortality among patients with diabetes and congestive heart failure. The participants in this study were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. To scrutinize potential associations between serum calcium levels and in-hospital mortality, a comprehensive analysis encompassing multivariate logistic regression, cubic spline function model, threshold effect analysis, and subgroup analysis was performed. This retrospective cohort study encompassed 7063 patients, among whom the in-hospital mortality stood at 12.2%. In the multivariate logistic regression, adjusted odds ratios (ORs) were contrasted with the reference category Q6 (8.8-9.1 mg/dL) for serum calcium levels and in-hospital mortality. The adjusted ORs for Q1 (≤ 7.7 mg/dL), Q2 (7.7-8 mg/dL), and Q7 (≥ 9.1 mg/dL) were 1.69 (95% CI 1.17-2.44, p = 0.005), 1.62 (95% CI 1.11-2.36, p = 0.013), and 1.57 (95% CI 1.1-2.24, p = 0.012) respectively. The dose-response analysis uncovered a U-shaped relationship between serum calcium levels and in-hospital mortality in diabetic patients with heart failure. Subgroup analyses confirmed result stability notwithstanding the influence of diverse factors. Our investigation revealed a U-shaped correlation between serum calcium levels and in-hospital mortality in diabetes patients with congestive heart failure, pinpointing a significant inflection point at 9.05 mg/dL.


Subject(s)
Calcium , Diabetes Mellitus , Heart Failure , Hospital Mortality , Humans , Heart Failure/mortality , Heart Failure/blood , Female , Male , Aged , Calcium/blood , Middle Aged , Retrospective Studies , Diabetes Mellitus/blood , Diabetes Mellitus/mortality , Aged, 80 and over
2.
Front Genet ; 13: 804190, 2022.
Article in English | MEDLINE | ID: mdl-35664305

ABSTRACT

Accurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES, AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework attained the robust predictive performance, with 2-year survival areas under the curve (AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse survival outcome. The metabolic risk score increased the accuracy of survival prediction in patients suffering from PAAD.

3.
Adv Funct Mater ; 31(44)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34720792

ABSTRACT

Implantable and ingestible biomedical electronic devices can be useful tools for detecting physiological and pathophysiological signals, and providing treatments that cannot be done externally. However, one major challenge in the development of these devices is the limited lifetime of their power sources. The state-of-the-art of powering technologies for implantable and ingestible electronics is reviewed here. The structure and power requirements of implantable and ingestible biomedical electronics are described to guide the development of powering technologies. These powering technologies include novel batteries that can be used as both power sources and for energy storage, devices that can harvest energy from the human body, and devices that can receive and operate with energy transferred from exogenous sources. Furthermore, potential sources of mechanical, chemical, and electromagnetic energy present around common target locations of implantable and ingestible electronics are thoroughly analyzed; energy harvesting and transfer methods befitting each energy source are also discussed. Developing power sources that are safe, compact, and have high volumetric energy densities is essential for realizing long-term in-body biomedical electronics and for enabling a new era of personalized healthcare.

4.
Chem Commun (Camb) ; 57(94): 12607-12610, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34755721

ABSTRACT

A gold catalyzed formal intermolecular [2+3] cyclo-coupling of 1,3-enynes with phenols was developed to prepare dihydrobenzofuran derivatives with the addition of 2,6-dichloropyridine N-oxide, in which, a highly ortho-selective phenol SEAr functionalization was achieved by using 1,3-enynes as α-oxo vinyl gold carbenoid surrogates.

5.
Gynecol Endocrinol ; 34(7): 584-588, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29262729

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women, resulting in ovulation failure and other metabolic problems. However, the underlying mechanisms of it remain largely uncertain due to the complexity of clinical manifestations. This systemic disorder is involved in endocrine, metabolism, immune system and many organs, and few studies have explored peripheral blood transcriptome in patients with PCOS. We performed gene expression profiling of peripheral blood from 8 PCOS patients and eight healthy women with microarray. The significance analysis of microarray (SAM) software was employed to screen the differentially expressed genes (DEGs) and gene ontology (GO) was used for functional enrichment analysis. In total, 181 DEGs with fold-changes >2.0 and q-values <0.05 were identified between the two groups. Among them, 149 were up-regulated and 32 down-regulated in PCOS. Unsupervised clustering of expressed genes could readily differentiate PCOS from control. More importantly, inflammatory response pathway including 14 dysregulated genes was highly enriched in PCOS. Furthermore, 10 DEGs were validated using quantitative reverse-transcription PCR (qRT-PCR) assays. Our study provides independent evidence for the involvement of systemic inflammatory response in PCOS and it may facilitate a greater understanding of this complex disease.


Subject(s)
Blood Cells/metabolism , Inflammation/genetics , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/genetics , Transcriptome , Adult , Case-Control Studies , Cluster Analysis , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humans , Inflammation/complications , Inflammation/metabolism , Inflammation Mediators/metabolism , Microarray Analysis , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/pathology
6.
Zhonghua Nan Ke Xue ; 22(5): 432-6, 2016 May.
Article in Chinese | MEDLINE | ID: mdl-27416668

ABSTRACT

OBJECTIVE: To investigate the influence of different methods of semen preservation and processing on sperm DNA integrity. METHODS: We collected semen samples from 100 normozoospermic male volunteers and, following homogeneous mixing, preserved them by means of snap freezing, slow freezing, or at the room temperature for 4 and 24 hours. Meanwhile we processed the semen by washing, swim-up, and density gradient centrifugation (DGC). Then we obtained the sperm DNA fragmentation index (DFI) by sperm chromatin dispersion test and measured total sperm motility and DFI after cultured for 24 hours following processing. RESULTS: The sperm DFIs after 4 hours of preservation by snap freezing, slow freezing, and at the room temperature were (27.3 ± 6.4)%, (26.9 ± 6.1)%, and (24.7 ± 6.8)%, respectively, and that after preserved at the room temperature for 24 hours was (35.6 ± 9.0)%, with statistically significant differences between the first three and the 24-hour room temperature preservation groups (P < 0.05) but not among the former three groups (P > 0.05). The sperm DFI was significantly higher in the samples processed by washing ([13.7 ± 2.0]%) than in those processed by swim-up ([9.1 ± 1.3]%) and DGC ([8.0 ± 2.5]%) (P < 0.05), and it was the lowest in the DGC group after 24-hour culture ([11.5 ± 4.2]%) as compared with the other groups (P < 0.05). CONCLUSION: Sperm DNA integrity is influenced by different semen preservation conditions and processing methods.


Subject(s)
DNA Fragmentation , Semen Analysis , Semen Preservation/methods , Centrifugation, Density Gradient , Humans , Male , Semen , Sperm Motility , Spermatozoa/cytology
7.
Zhonghua Nan Ke Xue ; 21(6): 532-5, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26242044

ABSTRACT

OBJECTIVE: To investigate the influence of the time interval from the end of semen processing to artificial intrauterine in semination with husband's sperm (AIH-IUI) on the rate of clinical pregnancy. METHODS: This study involved 191 AIH-IUI cycles with the same ovulation induction protocol. After Percoll density gradient centrifugation, we divided the sperm into four groups based on the incubation time: 0-19, 20-39, 40-59, and 60-80 min, and again into another four groups according to the total progressively motile sperm count (TPMC): (0-9), (10-20), (21-30), and > 30 x 10(6). We analyzed the correlation of the clinical pregnancy rate with the time interval from the end of sperm processing to AIH-IUI and with other influencing factors, such as maternal age, infertility duration, and semen quality. RESULTS: The rate of clinical pregnancy was significantly higher in the 20-39 min group (18.3%) than in the 0-19, 40-59, and 60-80 min groups (12.7, 11.4 and 9.1%) (all P < 0.05). The (10-20) x 10(6) group achieved a remarkably higher pregnancy rate (16.7%) than the (0-9), (21-30), and > 30 x 10(6) groups (0, 11.4, and 8.3%) (all P < 0.05). Logistic multivariate analysis showed that the rate of clinical pregnancy was decreased with the increased age of the women (OR 0.89, 95% CI 0.83-0.94) but significantly elevated in the 20-39 min group (OR 2.11, 95% CI 1.34-3.13) and of (10-20) x 10(6) group (OR 2.06, 95% CI 1.32-3.46). CONCLUSION: The time interval from the end of sperm processing to AIH-IUI is a most significant factor influencing the rate of clinical pregnancy of AIH-IUI.


Subject(s)
Infertility/therapy , Insemination, Artificial, Homologous/statistics & numerical data , Pregnancy Rate , Centrifugation, Density Gradient , Female , Humans , Male , Pregnancy , Semen , Semen Analysis , Sperm Count , Spermatozoa , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...