Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Water Res ; 168: 115164, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31629229

ABSTRACT

Carbamazepine (CBZ) is a typical pharmaceutical residue commonly found in aqueous environments, but its removal through activated carbon or advanced oxidation processes is often disrupted by co-existing organic matter. An imprinting system which consisted of the target pollutant CBZ (template molecule) and 10 different kinds of functional monomers was constructed via molecular simulation to screen for appropriate monomers, thereby addressing CBZ removal disruptions. An annealing method simulation was used to search for stable, low-energy conformations of the template-monomer interaction system to calculate the binding energy of these different monomers with CBZ. The order of binding affinity calculated was: 4-vinylbenzoic acid > itaconic acid > methacrylic acid, which was consistent with the experimental observations. The adsorption capacity of the molecular imprinted polymer (MIP) prepared using 4-vinylbenzoic acid reached 28.40 mg/g, and the imprinting factor reached 2.72. The simulation and measurement of the ultraviolet spectrum of the imprinting system showed that a new interaction system was formed between the template and monomers, and that multiple binding conformations between them took place when specific recognition occurred. Energy calculation and hydrogen bond analysis revealed that the van der Waals force, including the π-π conjugate and electrostatic forces including hydrogen bonding, played an important role during selective adsorption, which was confirmed by infrared spectroscopy analysis.


Subject(s)
Environmental Pollutants , Molecular Imprinting , Pharmaceutical Preparations , Adsorption , Carbamazepine
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(10): 3442-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-30247006

ABSTRACT

In virtue of the severity and scale of the pollution caused by oil pool flame, space remote sensing can provide us a new way of monitoring in real time the oil pool flame pollution. Space remote sensing monitoring is based on the analysis of target spectrum characteristics. Due to lack of adequate researches on the characteristics of infrared spectrum of oil pool flame, this paper carries out the analytical study on flame spectrums of several types of oil, mixed oil and other combustible objects in outdoor space by establishing all-flame infrared testing system with the spectrum range of 1~14 µm. The results show that the spectrum curves of oil pool flame of 92# gasoline, 95# gasoline, 0# diesel, aviation kerosene and lube have similar features, that there exist characteristics emission peaks at the area of certain wave lengths­H2O characteristics emission peak for 1.1, 2.4, 2.8 and 6.3 µm, CO2 characteristics emission peak for 4.2 and 4.5 µm, C­H stretching vibration emission peak for 3.4 µm, and no obvious characteristics peak for spectrum curves of 6.3 µm and above; that there is no obvious difference in the spectrum of oil pool flame among the mixtures of 92# gasoline and 0# diesel at different proportions, that the comparison of the flame spectrum of 92# gasoline with that of wood and paper shows that there appears a characteristics emission peak at 3.4 µm; that though the flame spectrum of alcohol has similar radiated emission near 3.4 µm, the proportion of its radiation intensity to that of CO2 at 4.5 µm is far less than that for the flame spectrum of 92# gasoline; that the flame spectrum of honeycomb briquette is similar to that of gray body radiation. The differences in flame spectrum among all kinds of combustible materials are closely linked to their chemical compositions and burning reaction mechanisms. Comparative analysis on the spectrum characteristics at continuous area, intermission area and flue gas area shows that C­H stretching vibration peak only exists in continuous area, which proves that the emission peak is caused by the combustible reaction of oil and gas. This result is in line with the mechanism of oil pool combustion reaction. The experimental conclusion is of great significance in the remote-sensing recognition of oil pool flame based on the analysis of spectrum characteristics.

3.
Mol Med Rep ; 12(2): 2049-55, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25849432

ABSTRACT

Propofol, an intravenous anesthetic, inhibits neuronal apoptosis induced by ischemic stroke, protects the brain from ischemia/reperfusion injury and improves neuronal function. However, whether propofol is able to protect the blood brain barrier (BBB) and the underlying mechanisms have remained to be elucidated. In the present study, a rat model of cerebral ischemia/reperfusion was established, using a thread embolism to achieve middle cerebral artery occlusion. Rats were treated with propofol (propofol post-conditioning) or physiological saline (control) administered by intravenous injection 30 min following reperfusion. Twenty-four hours following reperfusion, neurobehavioral manifestations were assessed. The levels of cephaloedema, damage to the BBB and expression levels of matrix metalloproteinase-9 (MMP-9), aquaporin-4 (AQP-4) and phosphorylated c-Jun N-terminal kinase (pJNK) were determined in order to evaluate the effects of propofol on the BBB. In comparison to the cerebral ischemia/reperfusion group, the levels of brain water content and Evans blue content, as well as the expression levels of MMP-9, AQP-4 and pJNK were significantly reduced in the propofol post-conditioning group. These results indicated that propofol post-conditioning improved the neurobehavioral manifestations and attenuated the BBB damage and cephaloedema induced following cerebral ischemia/reperfusion. This effect may be due to the inhibition of MMP-9 and AQP-4 expression, and the concurrent decrease in JNK phosphorylation.


Subject(s)
Anesthetics, Intravenous/therapeutic use , Aquaporin 4/metabolism , Blood-Brain Barrier/drug effects , Brain Ischemia/drug therapy , Matrix Metalloproteinase 9/metabolism , Propofol/therapeutic use , Reperfusion Injury/drug therapy , Animals , Aquaporin 4/analysis , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , MAP Kinase Kinase 4/analysis , MAP Kinase Kinase 4/metabolism , Matrix Metalloproteinase 9/analysis , Narcotics/therapeutic use , Phosphorylation/drug effects , Rats , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(5): 1234-9, 2014 May.
Article in Chinese | MEDLINE | ID: mdl-25095413

ABSTRACT

Cationic Polyacrylamide P(AM-DAC-BA) was synthesized by UV initiation, with acrylamide (AM), acryloyloxyethyl trimethyl ammonium chloride (DAC), butyl acrylate (BA) as the monomers. P(AM-DAC-BA). UV spectroscopy and infrared spectroscopy were employed to study the structural characteristics. Attributions of typical infrared vibrational frequencies in AM/DAC/BA/P(AM-DAC-BA) were analysed. By comparing with infrared spectroscopy of the monomers, symmetrical characteristic of P(AM-DAC-BA) increasesd, and the infrared spectroscopy of polymerization product was simpler. The intrinsic viscosity increased with the increase in light intensity, BA content, photoinitiator concentration and illumination time. The groups of -CONH2, -COOCH2(C=O), -COOCH2--(C-O-C), -CH2--N(CH3 )3 group in AM, DAC, BA were selected as characteristic absorption peaks for studying. With the increase in light intensity and BA content, the characteristic peak areas increased. With the increase in photoinitiator concentration, the characteristic peak areas decreased. The characteristic peak areas decreased firstly and then increased with increasing the illumination time. But the corresponding characteristic IR absorption peaks of P(AM-DAC-BA) were similar, and the positions of characteristic peaks were basically the same.

SELECTION OF CITATIONS
SEARCH DETAIL
...