Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Med Chem ; 64(24): 17753-17776, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34748351

ABSTRACT

Accumulation of very long chain fatty acids (VLCFAs) due to defects in ATP binding cassette protein D1 (ABCD1) is thought to underlie the pathologies observed in adrenoleukodystrophy (ALD). Pursuing a substrate reduction approach based on the inhibition of elongation of very long chain fatty acid 1 enzyme (ELOVL1), we explored a series of thiazole amides that evolved into compound 27─a highly potent, central nervous system (CNS)-penetrant compound with favorable in vivo pharmacokinetics. Compound 27 selectively inhibits ELOVL1, reducing C26:0 VLCFA synthesis in ALD patient fibroblasts, lymphocytes, and microglia. In mouse models of ALD, compound 27 treatment reduced C26:0 VLCFA concentrations to near-wild-type levels in blood and up to 65% in the brain, a disease-relevant tissue. Preclinical safety findings in the skin, eye, and CNS precluded progression; the origin and relevance of these findings require further study. ELOVL1 inhibition is an effective approach for normalizing VLCFAs in models of ALD.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Fatty Acid Elongases/administration & dosage , Pyrazoles/pharmacology , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/pathology , Amides/chemistry , Animals , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 12(6): 955-960, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141080

ABSTRACT

Herein, we report a novel series of highly potent and selective triazolothiadiazole c-Met inhibitors. Starting with molecule 5, we have applied structure-based drug design principles to identify the triazolothiadiazole ring system. We successfully replaced the metabolically unstable phenolic moiety with a quinoline group. Further optimization around the 5,6 bicyclic moiety led to the identification of 21. Compound 21 suffered from PDE3 selectivity issues and subsequent, structurally informed design led to the discovery of compound 23. Compound 23 has exquisite kinase selectivity, excellent potency, favorable ADME profile, and showed dose-dependent antitumor efficacy in a SNU-5 gastric cancer xenograft model.

3.
J Org Chem ; 84(14): 9378-9384, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31194913

ABSTRACT

A practical and mild set of conditions for the Sonogashira reaction utilizing CsF-mediated in situ TMS-alkyne desilylation followed by Sonogashira coupling has been developed for the synthesis of a variety of alkynyl benzenes and heteroarenes in good to excellent yields. This methodology demonstrates excellent functional group tolerance and simple purification, which allows large-scale industrial applications. This one-pot protocol enables a high-yielding Sonogashira coupling with volatile alkynes by avoiding challenging isolation of free alkynes.

4.
J Med Chem ; 61(12): 5245-5256, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29847724

ABSTRACT

The lipid kinase phosphoinositide 3-kinase γ (PI3Kγ) has attracted attention as a potential target to treat a variety of autoimmune disorders, including multiple sclerosis, due to its role in immune modulation and microglial activation. By minimizing the number of hydrogen bond donors while targeting a previously uncovered selectivity pocket adjacent to the ATP binding site of PI3Kγ, we discovered a series of azaisoindolinones as selective, brain penetrant inhibitors of PI3Kγ. This ultimately led to the discovery of 16, an orally bioavailable compound that showed efficacy in murine experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Adenosine Triphosphate/metabolism , Administration, Oral , Animals , Binding Sites , Biological Availability , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/administration & dosage , Humans , Hydrogen Bonding , Isoenzymes/antagonists & inhibitors , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phthalimides/chemistry , Structure-Activity Relationship
5.
Org Biomol Chem ; 13(42): 10471-6, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26352759

ABSTRACT

A design of experiments (DoE) analysis of a tandem SnAr-amidation cyclization reaction between 4-chloropyrimidin-5-amine and (S)-N-methylalanine to form (S)-7,8-dimethyl-7,8-dihydropteridin-6(5H)-one is reported. Five reaction variables were optimized using DoE and conversion was improved from 26% to 74%, with a significant reduction in reaction time while retaining high optical purity. The optimized conditions were applied to the synthesis of a wide variety of analogs and the expanded reaction substrate scope included a variety of amino acids and pyrimidines. Products were obtained in isolated yields up to 95% and enantiomeric excess as high as 98%.


Subject(s)
Combinatorial Chemistry Techniques/methods , Pteridines/chemical synthesis , Pteridines/chemistry
6.
J Med Chem ; 57(15): 6668-78, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25019388

ABSTRACT

In our effort to develop agents for the treatment of influenza, a phenotypic screening approach utilizing a cell protection assay identified a series of azaindole based inhibitors of the cap-snatching function of the PB2 subunit of the influenza A viral polymerase complex. Using a bDNA viral replication assay (Wagaman, P. C., Leong, M. A., and Simmen, K. A. Development of a novel influenza A antiviral assay. J. Virol. Methods 2002, 105, 105-114) in cells as a direct measure of antiviral activity, we discovered a set of cyclohexyl carboxylic acid analogues, highlighted by VX-787 (2). Compound 2 shows strong potency versus multiple influenza A strains, including pandemic 2009 H1N1 and avian H5N1 flu strains, and shows an efficacy profile in a mouse influenza model even when treatment was administered 48 h after infection. Compound 2 represents a first-in-class, orally bioavailable, novel compound that offers potential for the treatment of both pandemic and seasonal influenza and has a distinct advantage over the current standard of care treatments including potency, efficacy, and extended treatment window.


Subject(s)
Antiviral Agents/chemistry , Aza Compounds/chemistry , Indoles/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Aza Compounds/chemical synthesis , Aza Compounds/pharmacology , Biological Availability , Dogs , Drug Resistance, Viral , Indoles/chemical synthesis , Indoles/pharmacology , Influenza A virus/drug effects , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Male , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Orthomyxoviridae Infections/drug therapy , Rats , Species Specificity , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
7.
J Org Chem ; 72(2): 431-4, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17221958

ABSTRACT

A combination of mandelic acid and N-bromosuccinimide efficiently converts prochiral alkenes into a readily separable 1:1 mixture of the bromomandelates. The diastereomerically pure bromomandelates are then converted into a variety of enantiomerically pure products. Terminal alkenes are converted into enantiomerically pure epoxides. Cyclohexene is converted into enantiomerically pure cis-2-azidocyclohexanol and cis-2-phenylthiocyclohexanol.


Subject(s)
Alkenes/chemistry , Epoxy Compounds/chemical synthesis , Mandelic Acids/chemical synthesis , Bromosuccinimide/chemistry , Cyclohexanols/chemical synthesis , Cyclohexenes/chemistry , Epoxy Compounds/chemistry , Mandelic Acids/chemistry , Molecular Structure , Stereoisomerism
8.
J Am Chem Soc ; 127(47): 16629-40, 2005 Nov 30.
Article in English | MEDLINE | ID: mdl-16305252

ABSTRACT

[Ru(VI)(TMP)(NSO2R)2] (SO2R = Ms, Ts, Bs, Cs, Ns; R = p-C6H4OMe, p-C6H4Me, C6H5, p-C6H4Cl, p-C6H4NO2, respectively) and [Ru(VI)(Por)(NTs)2] (Por = 2,6-Cl2TPP, F20-TPP) were prepared by the reactions of [Ru(II)(Por)(CO)] with PhI=NSO2R in CH2Cl2. These complexes exhibit reversible Ru(VI/V) couple with E(1/2) = -0.41 to -0.12 V vs Cp2Fe(+/0) and undergo imido transfer reactions with styrenes, norbornene, cis-cyclooctene, indene, ethylbenzenes, cumene, 9,10-dihydroanthracene, xanthene, cyclohexene, toluene, and tetrahydrofuran to afford aziridines or amides in up to 85% yields. The second-order rate constants (k2) of the aziridination/amidation reactions at 298 K were determined to be (2.6 +/- 0.1) x 10(-5) to 14.4 +/- 0.6 dm3 mol(-1) s(-1), which generally increase with increasing Ru(VI/V) reduction potential of the imido complexes and decreasing C-H bond dissociation energy (BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary C-H) = 0.2 and k'(tertiary C-H)/k'(primary C-H) = 0.8.

9.
J Org Chem ; 70(22): 8739-42, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16238304

ABSTRACT

[reaction: see text] A model study leading to the preparation of the AEF rings of N-deacetyllappaconitine is described. The conjugate addition to the alpha-alkyl cyclohexenone 10 proceeded with high diastereocontrol. The Mannich cyclization of 16 to 4 was accomplished by heating with Rexyn-300 and Na(2)SO(4).


Subject(s)
Aconitine/analogs & derivatives , Aconitine/chemical synthesis , Aconitine/chemistry , Alkylation , Cyclization , Cyclohexanes/chemistry , Cyclohexenes , Hydrocarbons/chemistry , Methane/analogs & derivatives , Methane/chemistry , Models, Chemical , Molecular Structure
10.
Inorg Chem ; 44(11): 3942-54, 2005 May 30.
Article in English | MEDLINE | ID: mdl-15907122

ABSTRACT

The syntheses and reactivities of sterically encumbered trans-dioxoosmium(VI) complexes containing Schiff-base ligands bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamine (H2tBu-salch) and bis(3,5-dibromosalicylidene)-1,2-cyclohexane-diamine (H2Br-salch) are described. Reactions of [Os(VI)tBu-salch)O2] (1a) and [Os(VI)(Br-salch)O2] (1b) with PPh(3), p-X-arylamines (X = NO2, CN), N2H4 x H2O, Ph2NNH2, SOCl2, CF3CO2H, Br2, and I2 under reducing conditions gave [Os(II)(Br-salch)(OPPh3)2] (2), [Os(IV)(Br-salch)(p-X-C6H4NH)2] (3), [mu-O-{Os(IV)(tBu-salch)(p-NO2C6H4NH)}2] (4), [Os(II)(Br-salch)(N2)(H2O)] (5), [Os(IV)(tBu-salch)(OH)(Cl)] (6), [Os(IV)(tBu-salch)(OH)2] (7), [Os(IV)(tBu-salch)Cl2] (8), [Os(IV)(tBu-salch)(CF3CO2)2] (9), [Os(IV)(tBu-salch)Br2] (10), and [Os(IV)(tBu-salch)I2] (11), respectively. X-ray crystal structure determinations of [Os(IV)(Br-salch)(p-NO2C6H4NH)2] (3a), [Os(IV)(Br-salch)(p-CNC6H4NH)2] (3b), 6, 8, 9, and 11 reveal the Os-N(amido) distances to be 1.965(4)-1.995(1) A for the bis(amido) complexes, Os-Cl distances of 2.333(8)-2.3495(1) A for 6 and 8, Os-O(CF3CO2) distances of 2.025(6)-2.041(6) A for 9, and Os-I distances of 2.6884(6)-2.6970(6) A for 11. Upon UV irradiation, (1S,2S)-(1a) reacted with aryl-substituted alkenes to give the corresponding epoxides in moderate yields, albeit with no enantioselectivity. The (1R,2R)-6 catalyzed cyclopropanation of a series of substituted styrenes exhibited moderate to good enantioselectivity (up to 79% ee) and moderate trans selectivity.

11.
J Org Chem ; 69(11): 3610-9, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15152988

ABSTRACT

Ruthenium porphyrins [Ru(F(20)-TPP)(CO)] (F(20)-TPP = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) and [Ru(Por*)(CO)] (Por = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrinato dianion) catalyzed intramolecular amidation of sulfamate esters p-X-C(6)H(4)(CH(2))(2)OSO(2)NH(2) (X = Cl, Me, MeO), XC(6)H(4)(CH(2))(3)OSO(2)NH(2) (X = p-F, p-MeO, m-MeO), and Ar(CH(2))(2)OSO(2)NH(2) (Ar = naphthalen-1-yl, naphthalen-2-yl) with PhI(OAc)(2) to afford the corresponding cyclic sulfamidates in up to 89% yield with up to 100% substrate conversion; up to 88% ee was attained in the asymmetric intramolecular amidation catalyzed by [Ru(Por)(CO)]. Reaction of [Ru(F(20)-TPP)(CO)] with PhI[double bond]NSO(2)OCH(2)CCl(3) (prepared by treating the sulfamate ester Cl(3)CCH(2)OSO(2)NH(2) with PhI(OAc)(2)) afforded a bis(imido)ruthenium(VI) porphyrin, [Ru(VI)(F(20)-TPP)(NSO(2)OCH(2)CCl(3))(2)], in 60% yield. A mechanism involving reactive imido ruthenium porphyrin intermediate was proposed for the ruthenium porphyrin-catalyzed intramolecular amidation of sulfamate esters. Complex [Ru(F(20)-TPP)(CO)] is an active catalyst for intramolecular aziridination of unsaturated sulfonamides with PhI(OAc)(2), producing corresponding bicyclic aziridines in up to 87% yield with up to 100% substrate conversion and high turnover (up to 2014).

13.
Org Lett ; 4(25): 4507-10, 2002 Dec 12.
Article in English | MEDLINE | ID: mdl-12465924

ABSTRACT

[reaction: see text] Unsaturated sulfonamides underwent direct intramolecular aziridination catalyzed by Rh(2)(OAc)(4) with PhI(OAc)(2) and Al(2)O(3) to give the corresponding aziridine products in excellent yields (up to 98%) and with good to excellent conversions. High turnovers (up to 1375) were achieved. The intermolecular rhodium-catalyzed amidation of cholesteryl acetate with PhI=NTs or PhI(OAc)(2)/NH(2)R as the nitrogen source exhibited both excellent regio- and alpha-selectivity (alpha/beta ratio up to 9:1).


Subject(s)
Amides/chemistry , Rhodium/chemistry , Steroids/chemistry , Sulfonamides/chemistry , Catalysis , Dimerization , Molecular Structure
14.
Chem Commun (Camb) ; (18): 2090-1, 2002 Sep 21.
Article in English | MEDLINE | ID: mdl-12362907

ABSTRACT

A novel (mu-nitrido-diruthenium)-bridged 1-D coordination polymer was formed from reaction of K5[Ru2N(CN)10] with [Cu(en)2](ClO4)2; a similar reaction with [Cu(pn)2][(ClO4)2] (pn = 1,3-diaminopropane) gave ([Cu(pn)2]5[Ru2N(CN)10]2) as a discrete molecular compound; variable temperature susceptibility measurements show that there is a weak ferromagnetic interaction between the Cu(II) ions in 1-D polymer.

16.
Chem Commun (Camb) ; (2): 124-5, 2002 Jan 21.
Article in English | MEDLINE | ID: mdl-12120334

ABSTRACT

Chiral ruthenium(II)-salen complexes [RuII(salen)(PPh3)2] catalyse asymmetric aziridination of alkenes with up to 83% ees, asymmetric amidation of silyl enol ethers with up to 97% ees, and allylic amidation of cholesteryl acetates with good regioselectivity.


Subject(s)
Acetates/chemistry , Amides/chemistry , Cholesterol/chemistry , Ethers/chemistry , Ruthenium/chemistry , Schiff Bases/chemistry , Catalysis , Stereoisomerism
17.
Chemistry ; 8(7): 1563-72, 2002 Apr 02.
Article in English | MEDLINE | ID: mdl-11933085

ABSTRACT

Chiral metalloporphyrins [Mn(Por*)(OH)(MeOH)] (1) and [Ru(Por*)(CO)(EtOH)] (2) catalyze asymmetric aziridination of aromatic alkenes and asymmetric amidation of benzylic hydrocarbons to give moderate enantiomeric excesses. The mass balance in these nitrogen-atom-transfer processes has been examined. With PhI=NTs as the nitrogen source, the aziridination of styrenes, trans-stilbene, 2-vinylnaphthalene, indene, and 2,2-dimethylchromene catalyzed by complex 1 or 2 resulted in up to 99 % substrate conversions and up to 94 % aziridine selectivities, whereas the amidation of ethylbenzenes, indan, tetralin, 1-, and 2-ethylnaphthalene catalyzed by complex 2 led to substrate conversions of up to 32 % and amide selectivities of up to 91 %. Complex 1 or 2 can also catalyze the asymmetric amidation of 4-methoxyethylbenzene, tetralin, and 2-ethylnaphthalene with "PhI(OAc)(2) + NH(2)SO(2)Me", affording the N-substituted methanesulfonamides in up to 56 % ee with substrate conversions of up to 34 % and amide selectivities of up to 92 %. Extension of the "complex 1 + PhI=NTs" or "complex 1 + PhI(OAc)(2) + NH(2)R (R=Ts, Ns)" amidation protocol to a steroid resulted in diastereoselective amidation of cholesteryl acetate at the allylic C-H bonds at C-7 with substrate conversions of up to 49 % and amide selectivities of up to 90 % (alpha:beta ratio: up to 4.2:1). An aziridination- and amidation-active chiral bis(tosylimido)ruthenium(VI) porphyrin, [Ru(Por*)(NTs)(2)] (3), and a ruthenium porphyrin aziridine adduct, [Ru(Por*)(CO)(TsAz)] (4, TsAz=N-tosyl-2- (4-chlorophenyl)aziridine), have been isolated from the reaction of 2 with PhI=NTs and N-tosyl-2-(4-chlorophenyl)aziridine, respectively. The imidoruthenium porphyrin 3 could be an active species in the aziridination or amidation catalyzed by complex 2 described above. The second-order rate constants for the reactions of 3 with styrenes, 2-vinylnaphthalene, indene, ethylbenzenes, and 2-ethylnaphthalene range from 3.7-42.5x10(-3) dm(3) mol(-1) s(-1). An X-ray structure determination of complex 4 reveals an O- rather than N-coordination of the aziridine axial ligand. The fact that the N-tosylaziridine in 4 does not adopt an N-coordination mode disfavors a concerted pathway in the aziridination by a tosylimido ruthenium porphyrin active species.


Subject(s)
Alkenes/chemistry , Amides/chemistry , Manganese Compounds/chemistry , Metalloporphyrins/chemistry , Nitrogen/chemistry , Ruthenium Compounds/chemistry , Catalysis , Crystallography, X-Ray , Kinetics , Metalloporphyrins/chemical synthesis , Models, Molecular , Molecular Structure , Oxidation-Reduction , Ruthenium Compounds/chemical synthesis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...