Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2400494, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801122

ABSTRACT

Infected wounds pose challenges such as exudate management, bacterial infections, and persistent inflammation, making them a significant challenge for modern dressings. To address these issues in infected wounds more effectively, aerogel-hydrogel biphase gels based on dextran are developed. The gel introduced in this study exhibits antibacterial and anti-inflammatory properties in the process of wound therapy, contributing to accelerated wound healing. The aerogel phase exhibits exceptional water-absorption capabilities, rapidly soaking up exudate from infected wound, thereby fostering a clean and hygienic wound healing microenvironment. Concurrently, the aerogel phase is enriched with hydrogen sulfide donors. Following water absorption and the formation of the hydrogel phase, it enables the sustained release of hydrogen sulfide around the wound sites. The experiments confirm that hydrogen sulfide, by promoting M2 macrophage differentiation and reducing the levels of inflammatory factors, effectively diminishes local inflammation levels at the wound site. Furthermore, the sodium copper chlorophyllin component within the hydrogel phase demonstrates effective antibacterial properties through photodynamic antimicrobial therapy, providing a viable solution to wound infection challenges.

2.
J Colloid Interface Sci ; 657: 1-14, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38029524

ABSTRACT

Nanodrug delivery systems (NDSs), such as mesoporous silica, have been widely studied because of their high specific surface area, high loading rate, and easy modification; however, they are not easily metabolized and excreted by the human body and may be potentially harmful. Hence, we aimed to examine the synergistic anti-tumor effects of ex vivo chemo-photothermal therapy to develop a rational and highly biocompatible treatment protocol for tumors. We constructed a biodegradable NDS using organic mesoporous silica with a tetrasulfide bond structure, copper sulfide core, and folic acid-modified surface (CuS@DMONs-FA-DOX-PEG) to target a tumor site, dissociate, and release the drug. The degradation ability, photothermal conversion ability, hemocompatibility, and in vitro and in vivo anti-tumor effects of the CuS@DMONs-FA-DOX-PEG nanoparticles were evaluated. Our findings revealed that the nanoparticles encapsulated in copper sulfide exhibited significant photothermal activity and optimal photothermal conversion rate. Further, the drug was accurately delivered and released into the target tumor cells, annihilating them. This study demonstrated the successful preparation, safety, and synergistic anti-tumor effects of chemo-photothermal therapeutic nanomaterials.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Doxorubicin , Copper/pharmacology , Copper/chemistry , Photothermal Therapy , Silicon Dioxide/chemistry , Phototherapy , Neoplasms/drug therapy , Neoplasms/pathology , Nanoparticles/chemistry , Sulfides/pharmacology , Hydrogen-Ion Concentration
3.
Brain Behav Immun ; 115: 209-222, 2024 01.
Article in English | MEDLINE | ID: mdl-37858739

ABSTRACT

The mechanism by which SARS-CoV-2 causes neurological post-acute sequelae of SARS-CoV-2 (neuro-PASC) remains unclear. Herein, we conducted proteomic and metabolomic analyses of cerebrospinal fluid (CSF) samples from 21 neuro-PASC patients, 45 healthy volunteers, and 26 inflammatory neurological diseases patients. Our data showed 69 differentially expressed metabolites and six differentially expressed proteins between neuro-PASC patients and healthy individuals. Elevated sphinganine and ST1A1, sphingolipid metabolism disorder, and attenuated inflammatory responses may contribute to the occurrence of neuro-PASC, whereas decreased levels of 7,8-dihydropterin and activation of steroid hormone biosynthesis may play a role in the repair process. Additionally, a biomarker cohort consisting of sphinganine, 7,8-dihydroneopterin, and ST1A1 was preliminarily demonstrated to have high value in diagnosing neuro-PASC. In summary, our study represents the first attempt to integrate the diagnostic benefits of CSF with the methodological advantages of multi-omics, thereby offering valuable insights into the pathogenesis of neuro-PASC and facilitating the work of neuroscientists in disclosing different neurological dimensions associated with COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Proteomics , Disease Progression
4.
Mol Neurobiol ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37498481

ABSTRACT

Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.

5.
Sci Total Environ ; 873: 162119, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36773913

ABSTRACT

Hydrothermal carbonization has gained attention in converting wet organic solid waste into hydrochar with many applications such as solid fuel, energy storage material precursor, fertilizer or soil conditioner. Recently, various catalysts such as organic and inorganic catalysts are employed to guide the properties of the hydrochar. This review presents a summarize and a critical discussion on types of catalysts, process parameters and catalytic mechanisms. The catalytic impact of carboxylic acids is related to their acidity level and the number of carboxylic groups. The catalysis level with strong mineral acids is likely related to the number of hydronium ions liberated from their hydrolysis. The impact of inorganic salts is determined by the Lewis acidity of the cation. The metallic ions in metallic salts may incorporate into the hydrochar and increase the ash of the hydrochar. The selection of catalysts for various applications of hydrochars and the environmental and the techno-economic aspects of the process are also presented. Although some catalysts might enhance the characteristics of hydrochar for various applications, these catalysts may also result in considerable carbon loss, particularly in the case of organic acid catalysts, which may potentially ruin the overall advantage of the process. Overall, depending on the expected application of the hydrochar, the type of catalyst and the amount of catalyst loading requires careful consideration. Some recommendations are made for future investigations to improve laboratory-scale process comprehension and understanding of pathways as well as to encourage widespread industrial adoption.

6.
J Cell Physiol ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790954

ABSTRACT

Bacillus species act as plant growth-promoting rhizobacteria (PGPR) that can produce a large number of bioactive metabolites. Bacillaene, a linear polyketide/nonribosomal peptide produced by Bacillus strains, is synthesized by the trans-acyltransferase polyketide synthetase. The complexity of the chemical structure, particularity of biosynthesis, potent bioactivity, and the important role of competition make Bacillus an ideal antibiotic weapon to resist other microbes and maintain the optimal rhizosphere environment. This review provides an updated view of the structural features, biological activity, biosynthetic regulators of biosynthetic pathways, and the important competitive role of bacillaene during Bacillus survival.

7.
CNS Neurosci Ther ; 29 Suppl 1: 18-30, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36550632

ABSTRACT

INTRODUCTION: White matter injury (WMI) significantly affects neurobehavioral recovery in intracerebral hemorrhage (ICH) patients. Gut dysbiosis plays an important role in the pathogenesis of neurological disorders. Oxymatrine (OMT) has therapeutic effects on inflammation-mediated diseases. Whether OMT exerts therapeutic effects on WMI after ICH and the role of gut microbiota involved in this process is largely unknown. METHODS: Neurological deficits, WMI, gut microbial composition, intestinal barrier function, and systemic inflammation were investigated after ICH. Fecal microbiota transplantation (FMT) was performed to elucidate the role of gut microbiota in the pathogenesis of ICH. RESULTS: OMT promoted long-term neurological function recovery and ameliorated WMI in the peri-hematoma region and distal corticospinal tract (CST) region after ICH. ICH induced significant and persistent gut dysbiosis, which was obviously regulated by OMT. In addition, OMT alleviated intestinal barrier dysfunction and systemic inflammation. Correlation analysis revealed that gut microbiota alteration was significantly correlated with inflammation, intestinal barrier permeability, and neurological deficits after ICH. Moreover, OMT-induced gut microbiota alteration could confer protection against neurological deficits and intestinal barrier disruption. CONCLUSIONS: Our study demonstrates that OMT ameliorates ICH-induced WMI and neurological deficits by modulating gut microbiota.


Subject(s)
Brain Injuries , Gastrointestinal Diseases , Gastrointestinal Microbiome , White Matter , Mice , Animals , White Matter/pathology , Dysbiosis/drug therapy , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/pathology , Brain Injuries/pathology , Inflammation/pathology
8.
Cancers (Basel) ; 14(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010960

ABSTRACT

For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.

9.
Front Oncol ; 12: 781741, 2022.
Article in English | MEDLINE | ID: mdl-36003766

ABSTRACT

There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.

10.
Front Oncol ; 12: 921975, 2022.
Article in English | MEDLINE | ID: mdl-35847909

ABSTRACT

Gliomas are known as an incurable brain tumor for the poor prognosis and robust recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was identified in brain tumors, which may provide a new angle to explain the invasion, resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated that the cell subpopulation also expresses neural stem cell markers and shares a lot of features with both immature neurons and cancer stem cells and may be seen as an improperly reactivated neural cell network with a stemness feature at later time points of life. TMs may also provide a new angle to understand the resistance and recurrence mechanisms of glioma stem cells. In this review, we innovatively focus on the common features between TMs and sprouting axons in morphology, formation, and function. Additionally, we summarized the recent progress in the resistance and recurrence mechanisms of gliomas with TMs and explained the incurability and heterogeneity in gliomas with TMs. Moreover, we discussed the recently discovered overlap between cancer stem cells and TM-positive glioma cells, which may contribute to the understanding of resistant glioma cell subpopulation and the exploration of the new potential therapeutic target for gliomas.

11.
Clin Chim Acta ; 534: 81-92, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35810802

ABSTRACT

BACKGROUND AND AIMS: Circulating tumor DNA (ctDNA) has been recognized as a reliable source to reflect the molecular and genetic landscape of corresponding tumors in recent years. In this study, we tested the application of a cancer genomic panel sequencing on the cerebrospinal fluid (CSF)-derived ctDNA for the less invasive detection and diagnosis of glioma. MATERIALS AND METHODS: CtDNA was extracted from 26 CSF samples and subject to a cancer genomic panel sequencing of 520 genes to analyze the mutation profiles and tumor mutation burden (TMB), which were compared with their corresponding tumor DNA samples. Associations between mutations or TMB and clinical characteristics were also evaluated. RESULTS: A high detection rate of ctDNA (24/26, 92.3%) was observed in CSF. CtDNA mutations had high concordance rates with tumor DNA, especially in non-copy number variations and in glioblastoma. CSF ctDNA TMB also exhibited a strong correlation with tumor DNA TMB (R2 = 0.879, P < 0.001), particularly in glioblastoma (R2 = 0.992, P < 0.001). Age was significantly associated with CSF ctDNA TMB in glioma patients. CONCLUSION: We established a less invasive but effective molecular diagnostic approach using a cancer genomic panel sequencing system targeting CSF ctDNA for glioma, especially in glioblastoma.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Glioblastoma , Glioma , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , DNA, Neoplasm/genetics , Genomics , Glioblastoma/cerebrospinal fluid , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/diagnosis , Glioma/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation
12.
Food Chem ; 390: 133188, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35567969

ABSTRACT

Opium poppy abused in food has aroused public concerns due to its serious side effects. Effective monitoring is essential to fight the abuse crisis. Herein, we synthesized an easily prepared, affordable, accessible highly aggregated gold nanoparticles (AGNPs) performing in lateral flow immunoassay (LFIA) for detection opium poppy in herbal teas. Simultaneously, a LFIA based ontime-resolved fluorescent microspheres (TRFMs) was developed as contrastive method. In this study, morphine (MOR), codeine (COD) and thebaine (THE) were as the specific recognition markers of opium poppy. Results demonstrated the quantitative limits of detection were 0.0049/0.0053/0.084, 0.034/0.037/0.37 ng mL-1 for AGNPs/TRFMs-LFIA, respectively. The recoveries were 95%-107.5%/91%-106.7% with coefficient of variation was 1.6%-6.6%/1.8%-7.2%, indicating excellent accuracy and precision. Parallel experiments among AGNPs/TRFMs-LFIA and LC-MS/MS analysis showed good correlation. Overall, AGNPs-LFIA executed quantitative analysis within 15 min on the basis of simple treatment while providing a rapid and sensitive analysis strategy for illegal drugs abused.


Subject(s)
Metal Nanoparticles , Papaver , Teas, Herbal , Chromatography, Liquid , Gold , Immunoassay , Papaver/chemistry , Tandem Mass Spectrometry
13.
Biomed Pharmacother ; 149: 112797, 2022 May.
Article in English | MEDLINE | ID: mdl-35279596

ABSTRACT

Intracerebral hemorrhage (ICH) has a high mortality and disability rate. Fewer studies focus on white matter injury (WMI) after ICH, especially the corticospinal tract (CST) injury located in the spinal cord, which correlates with motor impairments. Recent studies have shown that gut microbiota dysbiosis occurs after ICH. Furthermore, NLRP3 inflammasome can be activated after ICH, resulting in inflammatory cascade reactions and aggravating brain injury. However, no direct and causal correlation among NLRP3 inflammasome inhibition, altered gut microbiota, and CST injury following ICH has been reported. This study aimed to investigate the effect of MCC950, a selective NLRP3 inflammasome inhibitor, on the gut microbiota and CST injury after ICH. We observed that compared with the sham group, the members of Firmicutes, such as Faecalibaculum and Dubosiella, were depleted in the ICH + Vehicle group, whereas the members of Proteobacteria and Campilobacterota were enriched, such as Enterobacter and Helicobacter. After treatment with MCC950, the Bacteroides, Bifidobacterium and Paenibacillus were relatively abundant in the gut flora of mice. Moreover, we observed CST injury located in cervical enlargement of the spinal cord, and MCC950 alleviated it. Furthermore, treatment with MCC950 decreased the mNSS score and brain water content in ICH. Taken together, the present study showed that MCC950 modulated gut microbiota, effectively attenuated CST injury located in cervical enlargement of the spinal cord, and ameliorated neurological deficits after ICH. This study provided a novel report that links NLRP3 inflammasome inhibition, gut microbiota alteration and CST injury following ICH and profound implications for ICH treatment.


Subject(s)
Brain Injuries , Gastrointestinal Microbiome , Animals , Brain Injuries/etiology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Disease Models, Animal , Inflammasomes , Inflammation/complications , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyramidal Tracts
14.
Biomed Pharmacother ; 145: 112443, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34847476

ABSTRACT

Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.


Subject(s)
Bacteria/genetics , Microbiota/physiology , Neoplasms/therapy , Animals , Antineoplastic Agents/pharmacology , Carcinogenesis , Combined Modality Therapy , Disease Progression , Genetic Engineering , Humans , Immunotherapy , Neoplasms/microbiology , Tumor Microenvironment
15.
J Biophotonics ; 15(4): e202100351, 2022 04.
Article in English | MEDLINE | ID: mdl-34936211

ABSTRACT

Mounting evidence suggests that distinct microbial communities reside in tumors and play important roles in tumor physiology. Recently, a previous study profiled the composition and localization of intratumoral bacteria using 16S ribosomal DNA (rDNA) sequencing and histological visualization methods across seven tumor types, including human glioblastoma. However, their results based on traditional histological examinations should be further validated considering potential sources of contamination originating from sample collection and processing. Here, we aim to propose a three-dimensional (3D) in situ intratumoral microbiota visualization and quantification protocol avoiding surface contamination and provide a comprehensive histological investigation on local bacteria within human glioma samples. We develop a 3D quantitative in situ intratumoral microbiota imaging strategy, combining tissue clearing, immunofluorescent labeling, optical sectioning microscopy, and image processing, to visualize bacterial lipopolysaccharide (LPS) within gliomas in a direct, contaminant-free, and unambiguous manner. Through an automated statistical algorithm, reliable signals can be distinguished for further analysis of their sizes, distribution, and fluorescence intensities. In tandem, we also combined 2D images obtained from thin-section histological methods, including immunohistochemistry and fluorescence in situ hybridization, to provide comprehensive histological imaging for local bacterial components within human glioma samples. We have, for the first time, achieved 3D quantitative imaging of bacterial LPS colonized in gliomas in a contamination-free manner within human glioma samples. We also built the multiple histological evidence chain demonstrating the irregular shapes and sparse distribution of bacterial components within human glioma samples, mostly localized near nuclear membranes or in the intercellular space. This study provides favorable evidence for the presence of microbiota in human gliomas and provides information on the feature and distribution of bacterial components. The results, along with the integrated 3D quantitative intratumoral microbiota imaging method, are promising to provide insightful information into the direct interactions between the microbial community and the host in the tumor microenvironment.


Subject(s)
Glioblastoma , Glioma , Microbiota , Glioblastoma/pathology , Glioma/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , In Situ Hybridization, Fluorescence , Tumor Microenvironment
16.
Environ Sci Pollut Res Int ; 28(2): 1919-1932, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32862342

ABSTRACT

Removing Co(II) from wastewater is urgent due to the threat to the environment and human health. In the work, the nanocomposite of graphene oxide-modified palygorskite (mPal-GO) is synthesized by cross-linking one-dimensional palygorskite (Pal) with two-dimensional material graphene oxide (GO), and used to remove Co(II) from wastewater. Its structure is characterized by Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement. The parameters, such as mass ratio (GO:mPal), temperature, pH, and contact time, are carefully investigated. The results indicate that pseudo-second-order equation and Langmuir isotherm model are the best fitting one in the adsorption process of Co(II) onto mPal-GO. The maximum adsorption capacity achieves 16.9 mg/g at pH = 6.0 and T = 298 K according to the Langmuir model analysis. Furthermore, mPal-GO can be reused more than 5 times with a slight decrease according to the adsorption-desorption cycle experiments. Finally, mPal-GO with the low-cost and easy separation is a promising candidate for removing of Co(II) from wastewater.


Subject(s)
Graphite , Nanocomposites , Water Pollutants, Chemical , Adsorption , Humans , Kinetics , Magnesium Compounds , Silicon Compounds , Spectroscopy, Fourier Transform Infrared , Wastewater , Water Pollutants, Chemical/analysis
17.
RSC Adv ; 8(41): 23382-23389, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-35540137

ABSTRACT

Adsorption is an efficient treatment method for aniline removal in water treatment. In this work, the composites of graphene oxide-modified attapulgite were prepared and used firstly to remove aniline from wastewater. The composites were characterized by Fourier transformed infrared, Brunauer-Emmett-Teller, scanning electron microscopy and X-ray diffraction analysis. The effects of initial concentration, time, temperature and pH value on adsorption of aniline on graphene oxide-modified attapulgite are investigated. pH and temperature are found to have a significant influence on the adsorption amount. The experimental results showed that graphene oxide-modified attapulgite possesses strong adsorption ability for aniline with hydrogen bond interaction. The saturated adsorption amount could reach up to 90 mg g-1 at pH = 2-4. The Langmuir isotherm is found to describe well the equilibrium adsorption data. Finally, graphene oxide-modified attapulgite is also observed to possess excellent reusability.

SELECTION OF CITATIONS
SEARCH DETAIL
...