Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
mSystems ; : e0018524, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700338

ABSTRACT

Acute ischemic stroke (AIS) patients with active COVID-19 infection often have more severe symptoms and worse recovery. COVID-19 infection can cause gut microbiota dysbiosis, which is also a risk factor for poor outcomes in AIS patients. However, the association between gut microbiota and functional outcomes among AIS patients with COVID-19 infection has not been fully clarified yet. In this study, we performed 16S rRNA gene sequencing to characterize the gut microbial community among AIS patients with acute COVID-19 infection, AIS patients with post-acute COVID-19 infection, and AIS patients without COVID-19 infection. We found that AIS patients with acute COVID-19 experienced poorer recovery and significant gut dysbiosis, characterized by higher levels of Enterobacteriaceae and lower levels of Ruminococcaceae and Lachnospiraceae. Furthermore, a shorter time window (less than 28 days) between COVID-19 infection and stroke was identified as a risk factor for poor functional outcomes in AIS patients with COVID-19, and the enrichment of Enterobacteriaceae was indicated as a mediator in the relationship between infection time window and poor stroke outcomes. Our findings highlight the importance of early intervention after COVID-19 infection, especially by regulating the gut microbiota, which plays a role in the prognosis of AIS patients with COVID-19 infection.IMPORTANCEThe gut microbiota plays an important role in the association between respiratory system and cerebrovascular system through the gut-lung axis and gut-brain axis. However, the specific connection between gut bacteria and the functional outcomes of acute ischemic stroke (AIS) patients with COVID-19 is not fully understood yet. In our study, we observed a significant decrease in bacterial diversity and shifts in the abundance of key bacterial families in AIS patients with acute COVID-19 infection. Furthermore, we identified that the time window was a critical influence factor for stroke outcomes, and the enrichment of Enterobacteriaceae acted as a mediator in the relationship between the infection time window and poor stroke outcomes. Our research provides a new perspective on the complex interplay among AIS, COVID-19 infection, and gut microbiota dysbiosis. Moreover, recognizing Enterobacteriaceae as a potential mediator of poor stroke prognosis offers a novel avenue for future exploration and therapeutic interventions.

2.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695903

ABSTRACT

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Subject(s)
Bacteria , Eleutherococcus , Fungi , Rhizosphere , Salt Stress , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Eleutherococcus/metabolism , Microbiota/drug effects , Soil/chemistry , Sodium Chloride/metabolism , Plant Roots/microbiology
3.
Front Pharmacol ; 14: 1303694, 2023.
Article in English | MEDLINE | ID: mdl-38044937

ABSTRACT

Background: As an antidiabetic agent, sotagliflozin was recently approved for heart failure (HF). However, its cardiovascular benefits in type 2 diabetic mellitus (T2DM) patients with HF or cardiovascular (CV) risk factors have not been systematically evaluated. The aim of this study is to evaluate the cardiovascular benefits and safety of sotagliflozin in T2DM patients with HF or CV risk factors using Bayesian network meta-analysis. Methods: Data were retrieved from PubMed, Embase, Web of Science, ClinicalTrials.gov, and Cochrane Library from their inception to 16 August 2023. Randomized controlled trials (RCTs) comparing sotagliflozin with a placebo, dapagliflozin, and empagliflozin in adult T2DM patients with HF or CV risks for at least 12 weeks were included in the study. Data analysis was conducted using R 4.2.3 and Stata 17.0. Cardiovascular efficacy outcomes included HF events (hospitalization or urgent visits for HF), MACE (deaths from CV causes, hospitalizations for HF, nonfatal myocardial infarctions, and strokes), cardiovascular death, the decrease in SBP, and weight loss. Safety outcomes are urinary tract infection, diarrhea, and diabetic ketoacidosis. Results: Eleven studies with 30,952 patients were included. Compared to dapagliflozin and empagliflozin, 200 mg of sotagliflozin showed the best effect in reducing HF events [OR (95% CI), 0.79 (0.66, 0.94) and 0.90 (0.63, 1.27)]. Compared to dapagliflozin, 200 mg of sotagliflozin [OR (95% CI), 0.76 (0.66, 0.87)] was superior in preventing MACE. Compared to empagliflozin, 200 mg of sotagliflozin [OR (95% CI), 1.46 (1.04, 2.05)] was inferior in preventing CV death. Sotagliflozin showed a poorer SBP decreasing effect than empagliflozin and dapagliflozin [MD (95% CI), 1.30 (0.03, 2.56) and 2.25 (0.35, 4.14), respectively]. There was no significant difference between sotagliflozin and other interventions in weight loss. Sotagliflozin exhibited no increased risk for diabetic ketoacidosis or urinary tract infection among all interventions, however, it showed a mild risk for diarrhea than placebo [OR (95% CI), 1.47 (1.28, 1.69)]. Conclusion: Sotagliflozin displayed moderate CV benefits and acceptable safety. Sotagliflozin can be one of the recommended options for T2DM patients with HF or CV risk factors, which will be important for evidence-based use of sotagliflozin as well as decision-making of T2DM medication.

4.
BMC Microbiol ; 23(1): 305, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875813

ABSTRACT

BACKGROUND: Despite advances in our understanding of the critical role of the microbiota in stroke patients, the oral microbiome has rarely been reported to be associated with stroke-associated pneumonia (SAP). We sought to profile the oral microbial composition of SAP patients and to determine whether microbiome temporal instability and special taxa are associated with pneumonia progression and functional outcomes. METHODS: This is a prospective, observational, single-center cohort study that examined patients with acute ischemic stroke (AIS) who were admitted within 24 h of experiencing a stroke event. The patients were divided into three groups based on the occurrence of pneumonia and the use of mechanical ventilation: nonpneumonia group, SAP group, and ventilator-associated pneumonia (VAP) group. We collected oral swabs at different time points post-admission and analyzed the microbiota using 16 S rRNA high-throughput sequencing. The microbiota was then compared among the three groups. RESULTS: In total, 104 nonpneumonia, 50 SAP and 10 VAP patients were included in the analysis. We found that SAP and VAP patients exhibited significant dynamic differences in the diversity and composition of the oral microbiota and that the magnitude of this dysbiosis and instability increased during hospitalization. Then, by controlling the potential effect of all latent confounding variables, we assessed the changes associated with pneumonia after stroke and explored patients with a lower abundance of Streptococcus were more likely to suffer from SAP. The logistic regression analysis revealed that an increase in specific taxa in the phylum Actinobacteriota was linked to a higher risk of poor outcomes. A model for SAP patients based on oral microbiota could accurately predict 30-day clinical outcomes after stroke onset. CONCLUSIONS: We concluded that specific oral microbiota signatures could be used to predict illness development and clinical outcomes in SAP patients. We proposed the potential of the oral microbiota as a non-invasive diagnostic biomarker in the clinical management of SAP patients. CLINICAL TRIAL REGISTRATION: NCT04688138. Registered 29/12/2020, https://clinicaltrials.gov/ct2/show/NCT04688138 .


Subject(s)
Ischemic Stroke , Pneumonia, Ventilator-Associated , Stroke , Humans , Cohort Studies , Dysbiosis/complications , Ischemic Stroke/complications , Stroke/complications , Prospective Studies
5.
Front Pharmacol ; 14: 1214658, 2023.
Article in English | MEDLINE | ID: mdl-37881186

ABSTRACT

Objective: This study aimed to investigate effect of antidiabetic herb Astragali Radix (AR) on pharmacokinetic behavior of dapagliflozin (DAPA) in healthy rats and type 2 diabetes mellitus (T2DM) rats. Methods: The T2DM rats were induced by high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). Concentrations of DAPA in healthy and T2DM rat plasma were determined by UPLC-MS/MS method. Effect of AR extract (ARE) on pharmacokinetic behavior of DAPA in healthy and T2DM rats was evaluated, respectively. Results: The diabetes status and co-administrated with ARE significantly affected pharmacokinetic behaviors of DAPA in the rats. Compared to that in healthy rats, t max of DAPA significantly shortened, its C max significantly increased in T2DM rats, and its t 1/2, V, AUC, CL and MRT kept unchanged. When ARE was co-administrated with DAPA, C max of DAPA significantly increased, its t max and MRT significantly decreased, and its t 1/2, V, AUC and CL kept unchanged in healthy rats. t max and C max of DAPA significantly decreased, its t 1/2 and V significantly increased, and its AUC, CL and MRT were unchanged in T2DM rats when ARE was co-administrated with DAPA. Co-administration of DAPA and ARE promoted absorptive rate of DAPA, increased its extravascular tissue distribution, and prolonged its duration of action. ARE did not cause accumulation of DAPA in vivo. Conclusion: Both disease status of T2DM and co-administration of ARE affect pharmacokinetic behavior of DAPA in vivo. Potential pharmacokinetic interactions may occur in vivo when herbs and drugs are co-administrated, which may affect efficacy and safety of drugs.

6.
J Ethnopharmacol ; 303: 115943, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36414211

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As one of the most commonly used herbs, Artemisia capillaris Thunb. (ACT) display favorable effect in the treatment of jaundice. However, mechanism of ACT in the treatment of jaundice remains unclear at present, which limits its development and application. AIM OF THE STUDY: To investigate effect and mechanism of Artemisia capillaris Thunb. (ACT) in the treatment of jaundice using pharmacodynamics, network pharmacology and metabolomics. METHODS: Effect of ACT in treating jaundice was evaluated by biochemical assays and pathological observation using the α-naphthyl isothiocyanate (ANIT)-induced mice. Jaundice-relieving mechanism of ACT was investigated by integration of network pharmacology and metabolomics. RESULTS: After the mice with jaundice were administrated ACT extract for 9 days, compared to that of the model group, serum D-BIL, T-BIL and ALP levels of the mice in the low, medium, high dose of ACT group decreased by 39.81%, 15.30% and 16.92%; 48.06%, 42.54% and 36.91%; 26.90%, 12.34% and 16.90%, respectively. The pathologic study indicated that ACT improved the symptoms of liver injury of the mice with jaundice. The network of herb (i.e., ACT)-components-targets-disease (i.e., jaundice) was established, which consisted of 17 components classified in flavonoids, chromones, organic acids, terpenoids, and 234 targets related to treatment of jaundice. Metabolomics analysis showed that, compared to that in the model group, level of 8 differential metabolites were upregulated and level of 29 differential metabolites were downregulated in the mice liver in the ACT group, respectively. The main metabolic pathways involved in treatment of jaundice by ACT were pantothenate and CoA biosynthesis, glutathione metabolism, biosynthesis of unsaturated fatty acids, primary bile acid biosynthesis in the liver, respectively. The integrated analysis of network pharmacology and metabolomics showed that 3α,7α,12α a-Trihydroxy-5ß-cholanate, glycocholate, taurocholate, pantetheine 4'-phosphate, and d-4'-phosphopantothenate were the potential biomarkers for treatment of jaundice, and AKR1C4, ALDH2 and HSD11B were the potential drug targets in the treatment of jaundice by ACT. CONCLUSION: The study based on metabolomics and network pharmacology indicated that ACT can display favorable jaundice-relieving effect by its multiple components regulating multiple biomarkers, multiple targets and multiple pathways, and may be a rational therapy for the treatment of jaundice.


Subject(s)
Artemisia , Drugs, Chinese Herbal , Jaundice , Mice , Animals , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Metabolomics , Jaundice/drug therapy , Biomarkers
8.
Microorganisms ; 10(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36422358

ABSTRACT

Spousal members who share no genetic relatedness show similar oral microbiomes. Whether a shared microbiome increases the risk of cerebrovascular disease is challenging to investigate. The aim of this study was to compare the oral microbiota composition of poststroke patients, their partners, and controls and to compare the risk of stroke between partners of poststroke patients and controls. Forty-seven pairs of spouses and 34 control subjects were recruited for the study. Alcohol use, smoking, metabolic disease history, clinical test results, and oral health were documented. Oral microbiome samples were measured by 16S rRNA gene sequencing. The risk of stroke was measured by risk factor assessment (RFA) and the Framingham Stroke Profile (FSP). Poststroke patients and their partners exhibited higher alpha diversity than controls. Principal-coordinate analysis (PCoA) showed that poststroke patients share a more similar microbiota composition with their partners than controls. The differentially abundant microbial taxa among the 3 groups were identified by linear discriminant analysis effect size (LEfSe) analysis. The risk factor assessment indicated that partners of poststroke patients had a higher risk of stroke than controls. Spearman correlation analysis showed that Prevotellaceae was negatively associated with RFA. Lactobacillales was negatively associated with FSP, while Campilobacterota and [Eubacterium]_nodatum_group were positively associated with FSP. These results suggest that stroke risk may be transmissible between spouses through the oral microbiome, in which several bacteria might be involved in the pathogenesis of stroke.

9.
RSC Adv ; 12(45): 29197-29213, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320733

ABSTRACT

Antibacterial drugs face increasing challenges due to drug resistance and adverse reactions, which has created a pressing need for the discovery and development of novel antibacterial drugs. Herbs have played an important role in the treatment of infectious diseases. This review aims to summarize, analyze and evaluate the antibacterial activities and mechanisms of components from popular herbs in East Asia. In this review, we have searched and summarized the scientific papers published during the past twenty-year period from electronic databases such as PubMed, ScienceDirect, and Web of Science. These herbs and their components, including alkaloids, flavonoids, essential oils, terpenes, organic acids, coumarins and lignans, display potential antimicrobial effects. Herbal medicine formulas (HMFs) usually show stronger antibacterial activity than single herbs. Herbs and HMFs bring forth antibacterial activities by damaging cell membranes and walls, inhibiting nucleic acid and protein synthesis, and increasing intracellular osmotic pressure. These herbs and their components can be developed as potential and promising novel antibacterial herbal products.

10.
Sci Rep ; 12(1): 15496, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109569

ABSTRACT

Since late 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant spread of COVID-19 have given rise to a worldwide health crisis that is posing great challenges to public health and clinical treatment, in addition to serving as a formidable threat to the global economy. To obtain an effective tool to prevent and diagnose viral infections, we attempted to obtain human antibody fragments that can effectively neutralize viral infection and be utilized for rapid virus detection. To this end, several human monoclonal antibodies were isolated by bio-panning a phage-displayed human antibody library, Tomlinson I. The selected clones were demonstrated to bind to the S1 domain of the spike glycoprotein of SARS-CoV-2. Moreover, clone A7 in Fab and IgG formats were found to effectively neutralize the binding of S protein to angiotensin-converting enzyme 2 in the low nM range. In addition, this clone was successfully converted to quench-based fluorescent immunosensors (Quenchbodies) that allowed antigen detection within a few minutes, with the help of a handy fluorometer.


Subject(s)
Bacteriophages , Biosensing Techniques , COVID-19 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Bacteriophages/metabolism , COVID-19/diagnosis , Humans , Immunoassay , Immunoglobulin Fragments , Immunoglobulin G , Membrane Glycoproteins/metabolism , Peptide Library , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/metabolism
11.
Front Pharmacol ; 13: 875014, 2022.
Article in English | MEDLINE | ID: mdl-35694255

ABSTRACT

Purpose: This study aimed to disclose the antidiabetic mechanisms of Rehmanniae Radix (RR). Methods: The antidiabetic effect of RR was studied in Streptozocin (STZ)-induced diabetes mellitus (DM) rats and HepG2 cells with insulin resistance (IR). Antidiabetic targets and signaling pathways of RR were confirmed by the network pharmacology and transcriptome analysis as well as HK2 cells induced by high glucose (HG). Results: After the DM rats were administrated RR extract (RRE) for 4 weeks, their body weight was 10.70 ± 2.00% higher than those in the model group, and the fasting blood glucose (FBG), AUC of the oral glucose tolerance test, and insulin sensitivity test values were 73.23 ± 3.33%, 12.31 ± 2.29%, and 13.61 ± 5.60% lower in the RRE group, respectively. When compared with the model group, an increase of 45.76 ± 3.03% in the glucose uptake of HepG2 cells with IR was seen in the RRE group. The drug (RR)-components-disease (DM)-targets network with 18 components and 58 targets was established. 331 differentially expressed genes (DEGs) were identified. TRPV1 and SCD1 were important DEGs by the intersectional analysis of network pharmacology and renal transcriptome. The TRPV1 overexpression significantly inhibited apoptosis and oxidative stress of the HK2 cells induced by HG, while SCD1 overexpression induced apoptosis and oxidative stress of the HK2 cells induced by low and high glucose. When compared to the HG group, the mRNA and protein expressions of TRPV1 in the presence of RRE (100 µg/ml) increased by 3.94 ± 0.08 and 2.83 ± 0.40 folds, respectively. Conclusion: In summary, RR displayed an inspiring antidiabetic effect by reducing FBG and IR, upregulating the mRNA and protein expressions of TRPV1, and downregulating mRNA expression of SCD1. Induction of TRPV1 and inhibition of SCD1 by RR was possibly one of its antidiabetic mechanisms.

12.
Front Bioeng Biotechnol ; 10: 818983, 2022.
Article in English | MEDLINE | ID: mdl-35419351

ABSTRACT

Estrogens are effective for stimulating several functions in living organisms and for regulating cancer development by promoting cell proliferation. Estradiol can disrupt the reproductive and endocrine systems, leading to the development of various diseases. In this study, the monoclonal antibody ESC9 was developed by immunizing mice with a 17ß-estradiol (E2) conjugate, preparing an antibody phage display library, and screening monoclonal antibodies from the prepared library. An antibody with the same sequence as that of ESC9 has not been reported previously. The equilibrium dissociation constant between ESC9 and E2 was found to be 43.3 nM. Additionally, we generated an ESC9-derived immunosensor named as the ESC9 Quenchbody (Q-body), which can rapidly and sensitively detect E2. The assay can be completed within 2 min with a limit of detection of 3.9 pg/ml and half-maximal effective concentration of 154.0 ng/ml. Serum E2 levels were measured using the ESC9 Q-body without pretreatment with serum and with a high recovery rate of 83.3-126.7%. The Q-body immunosensor shows potential for clinical applications based on its excellent detection speed and sensitivity.

13.
J Steroid Biochem Mol Biol ; 221: 106118, 2022 07.
Article in English | MEDLINE | ID: mdl-35487440

ABSTRACT

Aldosterone (ALD) is a steroid hormone secreted by the zona glomerulosa of the adrenal cortex that mainly acts on the kidney to regulate sodium ion and water reabsorption. Detection of ALD plays an important role in the diagnosis of primary aldosteronism in patients with hypertension. For the first time, the gene encoding the anti-ALD antibody, A2E11, was successfully cloned and analyzed using phage display technology. The antibody had an affinity of 2.5 nM against ALD, and after binding to ALD, it reached saturation within 5 s. Using this antibody, a Quenchbody (Q-body) was constructed by labeling the N-termini of heavy and light chains of the antigen-binding fragment of A2E11 with the fluorescent dye ATTO520 to detect ALD based on the principle of photoinduced electron transfer. The sensor detected ALD in 2 min, and the limit of detection was 24.1 pg/mL with a wide detection range from 24.1 pg/mL to 10 µg/mL and a half-maximal effective concentration of 42.3 ng/mL. At the highest concentration of ALD in the assay, the fluorescence intensity increased by 5.0-fold compared to the original fluorescence intensity of the Q-body solution. The Q-body could be applied to analyze 50% of human serum without a significant influence of the matrix. The recoveries of ALD in spiked serum samples with the Q-body assay were confirmed to range from 90.3% to 98.2%, suggesting their potential applications in the diagnosis of diseases, such as essential hypertension.


Subject(s)
Biosensing Techniques , Hypertension , Aldosterone/metabolism , Humans , Hypertension/diagnosis , Immunoassay , Mineralocorticoids
14.
Drug Metab Dispos ; 50(5): 552-565, 2022 05.
Article in English | MEDLINE | ID: mdl-35241486

ABSTRACT

Bilirubin-related adverse drug reactions (ADRs) or malady (e.g., jaundice) induced by some herbs rich in certain flavonoids have been widely reported. However, the causes and mechanisms of the ADRs are not well understood. The aim of this paper was to explore the mechanism of Shuang-huang-lian (SHL) injections and its major constituents-induced jaundice via inhibiting human UDP-glucuronosyltransferases1A1 (hUGT1A1)-mediated bilirubin glucuronidation. The inhibitory effects of SHL and its major constituents in the herbal medicine, including baicalein (BAI), baicalin (BA), and hyperoside (HYP), on bilirubin glucuroBBREVInidation were investigated. This study indicated that the average formation rates of bilirubin glucuronides [i.e., mono-glucuronide 1 (BMG1), BMG2, and bilirubin diglucuronide] displayed significant differences (P < 0.05). Specifically, the formation of BMGs was favored regardless of whether an inhibitor was absent or present. SHL, BAI, BA, and HYP dose-dependently inhibit bilirubin glucuronidation, showing the IC50 values against total bilirubin glucuronidation were in the range of (7.69 ± 0.94)-(37.09 ± 2.03) µg/ml, (4.51 ± 0.27)-(20.84 ± 1.99) µM, (22.36 ± 5.74)-(41.35 ± 2.40) µM, and (15.16 ± 1.12)-(42.80 ± 2.63) µM for SHL, BAI, BA, and HYP, respectively. Both inhibition kinetics assays and molecular docking simulations suggested that SHL, BAI, BA, and HYP significantly inhibited hUGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibition. Collectively, some naturally occurring flavonoids (BAI, BA, and HYP) in SHL have been identified as the inhibitors against hUGT1A1-mediated bilirubin glucuronidation, which well explains the bilirubin-related ADRs or malady triggered by SHL in clinical settings. SIGNIFICANCE STATEMENT: Herbal products and their components (e.g., flavonoids), which been widely used across the entire world, may cause liver injury. As a commonly used herbal products rich in flavonoids, SHL injections easily lead to symptoms of liver injury (e.g., jaundice) owing to significant inhibition of hUGT1A1-mediated bilirubin glucuronidation by its flavonoid components (i.e., baicalein, baicalin, and hyperoside). Herb-induced bilirubin-related ADRs and the associated clinical significance should be seriously considered.


Subject(s)
Coptis chinensis , Jaundice , Bilirubin , Flavanones , Flavonoids/pharmacology , Glucuronides , Glucuronosyltransferase , Humans , Molecular Docking Simulation , Quercetin/analogs & derivatives , Uridine Diphosphate
15.
Oncol Lett ; 23(1): 1, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34820000

ABSTRACT

The lethal-7 (Let-7) family of microRNAs (miRNAs) controls the process of development and differentiation, but is also related to the occurrence of tumors and a poor prognosis of patients with tumors. Thus, a more comprehensive exploration of its functions will provide further insights into these processes, and may promote the diagnosis and treatment of tumors. Leukemia is a type of progressive malignant disease, and its pathogenesis involves a variety of epigenetic factors. Amongst the several related epigenetic factors, the Let-7 miRNAs are an important family of molecules that play a crucial role in maintaining a variety of critical biological processes, including development, differentiation and proliferation. In the present study, the role of Let-7 as a tumor suppressor gene and oncogene is reviewed, and the complex regulatory functions of several Let-7 family members in different subtypes of leukemia are described. The current body of knowledge thus far indicates that Let-7 is not only a potential diagnostic and prognostic marker of leukemia, but also a potential therapeutic target for the treatment of affected patients, with particular potential when targeted by adjuvant treatments alongside traditional treatment to improve their survival rate.

16.
J Biosci Bioeng ; 130(4): 431-436, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32690363

ABSTRACT

Interaction of human programmed death factor-1 (hPD-1) of T cells and one of its ligands hPD-L1 which is expressed on cancer cells suppresses effector T cell functions. Studies showed that the hPD-1/hPD-L1 pathway is associated with killing mechanisms of tumor cells evading the immune system. Immunotherapy based on the checkpoint inhibitor on hPD-1 has been an important approach to treat cancer; however, not all cancer cells over-express hPD-L1. Detection of hPD-L1 over-expression in cancer cells may be a key factor for deciding on whether immunotherapy should be conducted. In the present study, we produced recombinant hPD-1 using Escherichia coli, and created a fluorescent probe termed quenched hPD-1 (QPD-1) for the detection of hPD-L1. We found that hPD-1 can quench fluorescence of carboxytetramethylrhodamine labeled on its N-terminal and QPD-1 is a convenient tool to rapidly detect hPD-L1 with a limit of detection of 10 nM and detectable range of 10 nM-1000 nM. QPD-1 may also function as a probe to screen for hPD-L1 over-expressing tumor cells and promote appropriate medical procedure through tumor immunotherapy.


Subject(s)
Fluorescent Dyes/chemistry , Programmed Cell Death 1 Receptor/analysis , Programmed Cell Death 1 Receptor/chemistry , Humans , Ligands , Limit of Detection , Rhodamines/chemistry
17.
Asian-Australas J Anim Sci ; 33(9): 1463-1469, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32164056

ABSTRACT

OBJECTIVE: The effects of maternal and offspring dietary vitamin A (VA) supplementation on early body weight, digestive tract function and immune function in goslings were studied. METHODS: Yangzhou geese (180 d old) were randomly divided into 5 experimental groups of 15 females and 3 males (the males were kept until slaughter). Eggs were collected for hatching during the peak laying period. A total of 96 goslings were selected from each treatment group (each fed a basic diet supplemented with 0, 4,000, 8,000, 12,000 or 16,000 IU/kg VA) and randomly divided into 2 groups, with 6 replicates in each group and 8 goslings in each replicate. The gosling diet was supplemented with 0 or 9,000 IU/kg VA. RESULTS: i) Villus length, villus width and the muscle thickness of the duodenum, jejunum and ileum were increased and the crypt depth was reduced after adding 12,000 IU/kg VA to the goslings' diet (p<0.05). Adding 9,000 IU/kg VA to the offspring diet increased the length of the duodenal villi and width of the ileum and decreased the crypt depth of the ileum (p<0.05). ii) Supplementing the maternal diet with 12,000 IU/kg VA increased immune organ weight, the immune organ index and immunoglobulin content in goslings (p<0.05). The bursa weight and immunoglobulin G content of offspring were higher in the 9,000 IU/kg VA supplementation group than in the group with no supplementation (p<0.05). CONCLUSION: Offspring growth and development were affected by the amount of VA added into maternal diet. The negative effect of maternal VA deficiency on offspring can be compensated by adding VA to the offspring diet. Continued VA supplementation in the offspring diet after excessive VA supplementation in the maternal diet is unfavorable for gosling growth and development.

18.
Curr Microbiol ; 70(5): 762-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25681107

ABSTRACT

2-phenylethanol (2-PE) is an important aromatic compound with a rose-like fragrance widely used in food industry and cosmetic manufacture. In order to obtain "natural" 2-PE, the genetically modified budding yeasts were developed and applied for the 2-PE production. The gene ARO8 encoding transaminase and the gene ARO10 encoding decarboxylase in the Ehrlich pathway were expressed in Saccharomyces cerevisiae S288c. The activities of transaminase and decarboxylase were both enhanced in the corresponding recombinant strains. Consequently, the 2-PE yield in the recombinant strains with ARO8 and ARO10 were increased by 9.3 and 16.3 %, respectively, than that in the wild strain. A co-expression vector harboring ARO8 and ARO10 was then introduced into S. cerevisiae S288c, generating the recombinant strain SPO810. The fed-batch fermentation results indicated that the 2-PE yield in SPO810 reached 2.61 g L(-1) after 60 h of cultivation, which was 36.8 % higher than that in the wild strain. These results demonstrated that the 2-PE production was significantly improved by enhanced expression of the two key enzymes encoded by ARO8 and ARO10 in the Ehrlich pathway, providing new perspectives for enhancing "natural" 2-PE production in S. cerevisiae.


Subject(s)
Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Phenylethyl Alcohol/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Fermentation , Gene Expression , Genetic Vectors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transaminases/genetics , Transaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...