Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(3)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38226826

ABSTRACT

The computational bottleneck of molecular dynamics is pairwise additive long-range interactions between particles. The random batch Ewald (RBE) method provides a highly efficient and superscalable solver for long-range interactions, but the stochastic nature of this algorithm leads to unphysical self-heating effect during the simulation. We propose an energy stable scheme (ESS) for particle systems by employing a Berendsen-type energy bath. The scheme removes the notorious energy drift, which exists due to the force error even when a symplectic integrator is employed. Combining the RBE with the ESS, the new method provides a perfect solution to the computational bottleneck of molecular dynamics at the microcanonical ensemble. Numerical results for a primitive electrolyte and all-atom pure water systems demonstrate the attractive performance of the algorithm, including its dramatically high accuracy, linear complexity, and overcoming the energy drift for long-time simulations.

2.
J Chem Phys ; 157(14): 144102, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36243529

ABSTRACT

We develop an accurate, highly efficient, and scalable random batch Ewald (RBE) method to conduct molecular dynamics simulations in the isothermal-isobaric ensemble (the NPT ensemble) for charged particles in a periodic box. After discretizing the Langevin equations of motion derived using suitable Lagrangians, the RBE method builds the mini-batch strategy into the Fourier space in the Ewald summation for the pressure and forces such that the computational cost is reduced to O(N) per time step. We implement the method in the Large-scale Atomic/Molecular Massively Parallel Simulator package and report accurate simulation results for both dynamical quantities and statistics for equilibrium for typical systems including all-atom bulk water and a semi-isotropic membrane system. Numerical simulations on massive supercomputing cluster are also performed to show promising central processing unit efficiency of the RBE.


Subject(s)
Molecular Dynamics Simulation , Ions , Water , Temperature , Pressure
3.
J Phys Chem A ; 126(22): 3583-3593, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35635179

ABSTRACT

The random batch Ewald (RBE) is an efficient and accurate method for molecular dynamics (MD) simulations of physical systems at the nano/microscale. The method shows great potential to solve the computational bottleneck of long-range interactions, motivating a necessity to accelerate short-range components of the nonbonded interactions for a further speedup of MD simulations. In this work, we present an improved RBE method for the nonbonding interactions by introducing the random batch idea to constructing neighbor lists for the treatment of both the short-range part of the Ewald splitting and the Lennard-Jones potential. The efficiency that the novel neighbor list algorithm owes to the stochastic minibatch strategy can significantly reduce the total number of neighbors. We obtain the error estimate and convergence by theoretical analysis and implement the improved RBE method in the LAMMPS package. Benchmark simulations are performed to demonstrate the accuracy and stability of the algorithm. Numerical tests on computer performance by conducting large-scaled MD simulations for systems including up to 0.1 billion water molecules are run on massive clusters with up to 50000 CPU cores, demonstrating the attractive features such as the high parallel scalability and memory-saving of the method in comparison to the existing methods.


Subject(s)
Algorithms , Molecular Dynamics Simulation , Water
4.
J Chem Phys ; 156(1): 014114, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998342

ABSTRACT

Coulomb interaction, following an inverse-square force-law, quantifies the amount of force between two stationary and electrically charged particles. The long-range nature of Coulomb interactions poses a major challenge to molecular dynamics simulations, which are major tools for problems at the nano-/micro-scale. Various algorithms are developed to calculate the pairwise Coulomb interactions to a linear scale, but poor scalability limits the size of simulated systems. Here, we use an efficient molecular dynamics algorithm with the random batch Ewald method on all-atom systems where the complete Fourier components in the Coulomb interaction are replaced by randomly selected mini-batches. By simulating the N-body systems up to 108 particles using 10 000 central processing unit cores, we show that this algorithm furnishes O(N) complexity, almost perfect scalability, and an order of magnitude faster computational speed when compared to the existing state-of-the-art algorithms. Further examinations of our algorithm on distinct systems, including pure water, a micro-phase separated electrolyte, and a protein solution, demonstrate that the spatiotemporal information on all time and length scales investigated and thermodynamic quantities derived from our algorithm are in perfect agreement with those obtained from the existing algorithms. Therefore, our algorithm provides a promising solution on scalability of computing the Coulomb interaction. It is particularly useful and cost-effective to simulate ultra-large systems, which is either impossible or very costly to conduct using existing algorithms, and thus will be beneficial to a broad range of problems at nano-/micro-scales.

5.
J Chem Phys ; 155(4): 044108, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34340370

ABSTRACT

We propose a fast method for the calculation of short-range interactions in molecular dynamics simulations. The so-called random-batch list method is a stochastic version of the classical neighbor-list method to avoid the construction of a full Verlet list, which introduces two-level neighbor lists for each particle such that the neighboring particles are located in core and shell regions, respectively. Direct interactions are performed in the core region. For the shell zone, we employ a random batch of interacting particles to reduce the number of interaction pairs. The error estimate of the algorithm is provided. We investigate the Lennard-Jones fluid by molecular dynamics simulations and show that this novel method can significantly accelerate the simulations with a factor of several fold without loss of the accuracy. This method is simple to implement, can be well combined with any linked cell methods to further speed up and scale up the simulation systems, and can be straightforwardly extended to other interactions, such as Ewald short-range part, and thus it is promising for large-scale molecular dynamics simulations.

6.
J Chem Phys ; 152(13): 134109, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32268756

ABSTRACT

We have developed an accurate and efficient method for molecular dynamics simulations of charged particles confined by planar dielectric interfaces. The algorithm combines the image-charge method for near field with the harmonic surface mapping, which converts the contribution of infinite far-field charges into a finite number of charges on an auxiliary spherical surface. We approximate the electrostatic potential of far-field charges via spherical harmonic expansion and determine the coefficients by fitting the Dirichlet-to-Neumann boundary condition, which only requires the potential within the simulation cell. Instead of performing the direct evaluation of spherical harmonic series expansion, we use Green's second identity to transform the series expansion into a spherical integral, which can be accurately represented by discrete charges on the sphere. Therefore, the fast multipole method can be readily employed to sum over all charges within and on the sphere, achieving truly linear O(N) complexity. Our algorithm can be applied to a broad range of charged complex fluids under dielectric confinement.

7.
J Chem Phys ; 149(8): 084111, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30193473

ABSTRACT

We propose a harmonic surface mapping algorithm (HSMA) for electrostatic pairwise sums of an infinite number of image charges. The images are induced by point sources within a box due to a specific boundary condition which can be non-periodic. The HSMA first introduces an auxiliary surface such that the contribution of images outside the surface can be approximated by the least-squares method using spherical harmonics as basis functions. The so-called harmonic surface mapping is the procedure to transform the approximate solution into a surface charge and a surface dipole over the auxiliary surface, which becomes point images by using numerical integration. The mapping procedure is independent of the number of the sources and is considered to have a low complexity. The electrostatic interactions are then among those charges within the surface and at the integration points, which are all the forms of Coulomb potential and can be accelerated straightforwardly by the fast multipole method to achieve linear scaling. Numerical calculations of the Madelung constant of a crystalline lattice, electrostatic energy of ions in a metallic cavity, and the time performance for large-scale systems show that the HSMA is accurate and fast, and thus is attractive for many applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...