Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(5-6): 1785-1800, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36786917

ABSTRACT

Proteins comprise a multibillion-dollar industry in enzymes and therapeutics, but bacterial protein production can be costly and inefficient. Proteins of interest (POIs) must be extracted from lysed cells and inclusion bodies, purified, and resolubilized, which adds significant time and cost to the protein-manufacturing process. The Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS) has been engineered to address these problems by secreting soluble, active proteins directly into the culture media, reducing the number of purification steps. However, the current best practices method of T3SS pathway activation is not ideal for industrial scaleup. Previously, the T3SS was activated by plasmid-based overexpression of the T3SS transcriptional regulator, hilA, which requires the addition of a small molecule inducer (IPTG) to the culture media. IPTG adds significant cost to production and plasmid-based expression is subject to instability in large-scale fermentation. Here, we modulate the upstream transcriptional regulator, hilD, to activate the T3SS via three distinct methods. In doing so, we develop a toolbox of T3SS activation methods and construct constitutively active T3SS strains capable of secreting a range of heterologous proteins at titers comparable to plasmid-based hilA overexpression. We also explore how each activation method in our toolbox impacts the SPI-1 regulatory cascade and discover an epistatic relationship between T3SS regulators, hilE and the hilD 3' untranslated region (hilD 3'UTR). Together, these findings further our goal of making an industrially competitive protein production strain that reduces the challenges associated with plasmid induction and maintenance. KEY POINTS: • Characterized 3 new type III secretion system (T3SS) activation methods for heterologous protein secretion, including 2 constitutive activation methods. • Eliminated the need for a second plasmid and a small molecule inducer to activate the system, making it more suitable for industrial production. • Discovered new regulatory insights into the SPI-1 T3SS, including an epistatic relationship between regulators hilE and the hilD 3' untranslated region.


Subject(s)
Salmonella typhimurium , Type III Secretion Systems , Salmonella typhimurium/genetics , 3' Untranslated Regions , Isopropyl Thiogalactoside/metabolism , Bacterial Proteins/genetics , Culture Media/metabolism , Gene Expression Regulation, Bacterial
2.
Dev Cell ; 49(6): 936-947.e4, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31211995

ABSTRACT

Loss of nuclear pore complex (NPC) proteins, transcription factors (TFs), histone modification enzymes, Mediator, and factors involved in mRNA export disrupts the physical interaction of chromosomal sites with NPCs. Conditional inactivation and ectopic tethering experiments support a direct role for the TFs Gcn4 and Nup2 in mediating interaction with the NPC but suggest an indirect role for factors involved in mRNA export or transcription. A conserved "positioning domain" within Gcn4 controls interaction with the NPC and inter-chromosomal clustering and promotes transcription of target genes. Such a function may be quite common; a comprehensive screen reveals that tethering of most yeast TFs is sufficient to promote targeting to the NPC. While some TFs require Nup100, others do not, suggesting two distinct targeting mechanisms. These results highlight an important and underappreciated function of TFs in controlling the spatial organization of the yeast genome through interaction with the NPC.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/metabolism , Genome, Fungal , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Active Transport, Cell Nucleus , Basic-Leucine Zipper Transcription Factors/genetics , Chromatin/genetics , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...