Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Sens ; 9(8): 4196-4206, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39096304

ABSTRACT

Reliable and real-time monitoring of seafood decay is attracting growing interest for food safety and human health, while it is still a great challenge to accurately identify the released triethylamine (TEA) from the complex volatilome. Herein, defect-engineered WO3-x architectures are presented to design advanced TEA sensors for seafood quality assessment. Benefiting from abundant oxygen vacancies, the obtained WO2.91 sensor exhibits remarkable TEA-sensing performance in terms of higher response (1.9 times), faster response time (2.1 times), lower detection limit (3.2 times), and higher TEA/NH3 selectivity (2.8 times) compared with the air-annealed WO2.96 sensor. Furthermore, the definite WO2.91 sensor demonstrates long-term stability and anti-interference in complex gases, enabling the accurate recognition of TEA during halibut decay (0-48 h). Coupled with the random forest algorithm with 70 estimators, the WO2.91 sensor enables accurate prediction of halibut storage with an accuracy of 95%. This work not only provides deep insights into improving gas-sensing performance by defect engineering but also offers a rational solution for reliably assessing seafood quality.


Subject(s)
Algorithms , Oxides , Seafood , Tungsten , Seafood/analysis , Tungsten/chemistry , Oxides/chemistry , Food Quality , Random Forest
2.
Inorg Chem ; 63(27): 12516-12524, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917357

ABSTRACT

Chemiresistive NH3/NO2 sensors are attracting considerable attention for use in air-conditioning systems. However, the existing sensors suffer from cross-sensitivity, detection limit, and power consumption, owing to the inadequate charge-transfer ability of gas-sensing materials. Herein, we develop a flexible NH3/NO2 sensor based on graphitic carbon nitride/polypyrrole decorated alginate paper (AP@g-CN/PPy). The flexible sensor can work at room temperature and exhibits a positive response of 23-246% and a negative response of 37-262% toward 0.1-5 ppm of NH3 and NO2, which is ∼4.5 times and ∼7.0 times higher than a pristine PPy sensor. Moreover, the sensor exhibits flexibility, reproducibility, long-term stability, anti-interference, and high resilience to humidity, indicating its promising potential in real applications. Using the 9 feature parameters extracted from the transient response, a matched deep learning model was developed to achieve qualitative recognition of different types of gases with distinguished decision boundaries. This work not only provides an alternative gas-sensing material for dual NH3/NO2 sensing but also establishes an intelligent strategy to identify hazardous gases under an interfering atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL