Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mol Imaging Biol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480650

ABSTRACT

PURPOSE: Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges. PROCEDURES: Using phage display peptide libraries and pioneering algorithms, we identified novel CD38 specific peptides. Imaging bioconjugates were synthesized using solid phase peptide chemistry, and systematically analyzed in vitro and in vivo in relevant MM systems. RESULTS: The CD38-targeted bioconjugates were radiolabeled with copper-64 (64Cu) with100% radiochemical purity and an average specific activity of 3.3 - 6.6 MBq/nmol. The analog NODAGA-PEG4-SL022-GGS (SL022: Thr-His-Tyr-Pro-Ile-Val-Ile) had a Kd of 7.55 ± 0.291 nM and was chosen as the lead candidate. 64Cu-NODAGA-PEG4-SL022-GGS demonstrated high binding affinity to CD38 expressing human myeloma MM.1S-CBR-GFP-WT cells, which was blocked by the non-radiolabeled version of the peptide analog and anti-CD38 clinical antibodies, daratumumab and isatuximab, by 58%, 73%, and 78%, respectively. The CD38 positive MM.1S-CBR-GFP-WT cells had > 68% enhanced cellular binding when compared to MM.1S-CBR-GFP-KO cells devoid of CD38. Furthermore, our new CD38-targeted radiopharmaceutical allowed visualization of tumors located in marrow rich bones, remaining there for up to 4 h. Clearance from non-target organs occurred within 60 min. Quantitative PET data from a murine disseminated tumor model showed significantly higher accumulation in the bones of tumor-bearing animals compared to tumor-naïve animals (SUVmax 2.06 ± 0.4 versus 1.24 ± 0.4, P = 0.02). Independently, tumor uptake of the target compound was significantly higher (P = 0.003) compared to the scrambled peptide, 64Cu-NODAGA-PEG4-SL041-GGS (SL041: Thr-Tyr-His-Ile-Pro-Ile-Val). The subcutaneous MM model demonstrated significantly higher accumulation in tumors compared to muscle at 1 and 4 h after tracer administration (SUVmax 0.8 ± 0.2 and 0.14 ± 0.04, P = 0.04 at 1 h; SUVmax 0.89 ± 0.01 and 0.09 ± 0.01, P = 0.0002 at 4 h). CONCLUSIONS: The novel CD38-targeted, radiolabeled bioconjugates were specific and allowed visualization of MM, providing a starting point for the clinical translation of such tracers for the detection of MM.

2.
Arthritis Res Ther ; 23(1): 265, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34696809

ABSTRACT

BACKGROUND: The development and optimization of therapies for rheumatoid arthritis (RA) is currently hindered by a lack of methods for early non-invasive monitoring of treatment response. Annexin A2, an inflammation-associated protein whose presence and phosphorylation levels are upregulated in RA, represents a potential molecular target for tracking RA treatment response. METHODS: LS301, a near-infrared dye-peptide conjugate that selectively targets tyrosine 23-phosphorylated annexin A2 (pANXA2), was evaluated for its utility in monitoring disease progression, remission, and early response to drug treatment in mouse models of RA by fluorescence imaging. The intraarticular distribution and localization of LS301 relative to pANXA2 was determined by histological and immunohistochemical methods. RESULTS: In mouse models of spontaneous and serum transfer-induced inflammatory arthritis, intravenously administered LS301 showed selective accumulation in regions of joint pathology including paws, ankles, and knees with positive correlation between fluorescent signal and disease severity by clinical scoring. Whole-body near-infrared imaging with LS301 allowed tracking of spontaneous disease remission and the therapeutic response after dexamethasone treatment. Histological analysis showed preferential accumulation of LS301 within the chondrocytes and articular cartilage in arthritic mice, and colocalization was observed between LS301 and pANXA2 in the joint tissue. CONCLUSIONS: We demonstrate that fluorescence imaging with LS301 can be used to monitor the progression, remission, and early response to drug treatment in mouse models of RA. Given the ease of detecting LS301 with portable optical imaging devices, the agent may become a useful early treatment response reporter for arthritis diagnosis and drug evaluation.


Subject(s)
Annexin A2 , Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Arthritis, Experimental/diagnostic imaging , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Chondrocytes , Mice , Optical Imaging , Tyrosine
3.
Nat Biomed Eng ; 4(3): 298-313, 2020 03.
Article in English | MEDLINE | ID: mdl-32165732

ABSTRACT

The heterogeneity and continuous genetic adaptation of tumours complicate their detection and treatment via the targeting of genetic mutations. However, hallmarks of cancer such as aberrant protein phosphorylation and calcium-mediated cell signalling provide broadly conserved molecular targets. Here, we show that, for a range of solid tumours, a cyclic octapeptide labelled with a near-infrared dye selectively binds to phosphorylated Annexin A2 (pANXA2), with high affinity at high levels of calcium. Because of cancer-cell-induced pANXA2 expression in tumour-associated stromal cells, the octapeptide preferentially binds to the invasive edges of tumours and then traffics within macrophages to the tumour's necrotic core. As proof-of-concept applications, we used the octapeptide to detect tumour xenografts and metastatic lesions, and to perform fluorescence-guided surgical tumour resection, in mice. Our findings suggest that high levels of pANXA2 in association with elevated calcium are present in the microenvironment of most solid cancers. The octapeptide might be broadly useful for selective tumour imaging and for delivering drugs to the edges and to the core of solid tumours.


Subject(s)
Annexin A2/metabolism , Calcium/metabolism , Diagnostic Imaging/methods , Neoplasms/diagnostic imaging , A549 Cells , Animals , Annexin A2/genetics , Apoptosis , Cell Line, Tumor , Disease Models, Animal , HEK293 Cells , Humans , Macrophages , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Pancreatic Neoplasms/diagnostic imaging , Phosphorylation , Proteomics , Stromal Cells , Transplantation, Heterologous
4.
J Biophotonics ; 11(4): e201700232, 2018 04.
Article in English | MEDLINE | ID: mdl-29206348

ABSTRACT

Rapid detection of multifocal cancer without the use of complex imaging schemes will improve treatment outcomes. In this study, dynamic fluorescence imaging was used to harness differences in the perfusion kinetics of near-infrared (NIR) fluorescent dyes to visualize structural characteristics of different tissues. Using the hydrophobic nontumor-selective NIR dye cypate, and the hydrophilic dye LS288, a high tumor-to-background contrast was achieved, allowing the delineation of diverse tissue types while maintaining short imaging times. By clustering tissue types with similar perfusion properties, the dynamic fluorescence imaging method identified secondary tumor locations when only the primary tumor position was known, with a respective sensitivity and specificity of 0.97 and 0.75 for cypate, and 0.85 and 0.81 for LS288. Histological analysis suggests that the vasculature in the connective tissue that directly surrounds the tumor was a major factor for tumor identification through perfusion imaging. Although the hydrophobic dye showed higher specificity than the hydrophilic probe, use of other dyes with different physical and biological properties could further improve the accuracy of the dynamic imaging platform to identify multifocal tumors for potential use in real-time intraoperative procedures.


Subject(s)
Fibrosarcoma/diagnostic imaging , Infrared Rays , Molecular Probes/metabolism , Optical Imaging , Perfusion Imaging , Algorithms , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Fibrosarcoma/metabolism , Fibrosarcoma/pathology , Humans , Image Processing, Computer-Assisted , Mice
5.
Pharm Res ; 33(9): 2298-306, 2016 09.
Article in English | MEDLINE | ID: mdl-27283829

ABSTRACT

PURPOSE: The purpose of this study is to investigate a sol-gel transition property and content release profiles for thermosensitive poly-(D,L-lactide-co-glycolide)-block-poly-(ethylene glycol)-block-poly-(D,L-lactide-co-glycolide) (PLGA-b-PEG-b-PLGA) hydrogels carrying paclitaxel, rapamycin, and LS301, and to present a proof-of-concept that PLGA-b-PEG-b-PLGA hydrogels carrying paclitaxel, rapamycin, and LS301, called TheranoGel, exhibit excellent theranostic activity in peritoneal ES-2-luc ovarian cancer xenograft mice. METHODS: Thermosensitive PLGA-b-PEG-b-PLGA hydrogels carrying paclitaxel, rapamycin, and LS301, individually or in combination, were prepared via a lyophilization method, characterized with content release kinetics, and assessed with theranostic activity in ES-2-luc xenograft mice. RESULTS: A thermosensitive PLGA-b-PEG-b-PLGA sol-gel system was able to entrain 3 poorly water-soluble payloads, paclitaxel, rapamycin, and LS301 (TheranoGel). TheranoGel made a sol-to-gel transition at 37°C and slowly released 3 drugs at a simultaneous release rate in response to the physical dissociation of hydrogels in vitro. TheranoGel enabled loco-regional delivery of multi-drugs by forming a gel-depot in the peritoneal cavity of ES-2-luc xenograft mice. An intraperitoneal (IP) administration of TheranoGel resulted in excellent therapeutic and diagnostic activities, leading to the improved peritoneal surgery in ES-2-luc xenograft mice. CONCLUSIONS: TheranoGel prepared via a facile lyophiliation method enabled successful IP delivery of multi-drugs and exhibited excellent theranostic activity in vivo.


Subject(s)
Hydrogels/chemistry , Ovarian Neoplasms/diet therapy , Paclitaxel/chemistry , Peritoneal Neoplasms/drug therapy , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Animals , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Injections, Intraperitoneal/methods , Mice , Mice, Nude , Paclitaxel/administration & dosage , Polyesters/administration & dosage , Polyethylene Glycols/administration & dosage , Sirolimus/administration & dosage , Sirolimus/chemistry , Surgery, Computer-Assisted/methods
6.
Sci Rep ; 5: 12117, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26179014

ABSTRACT

The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging.


Subject(s)
Neoplasms, Experimental/pathology , Neoplasms, Experimental/surgery , Sentinel Lymph Node Biopsy , Vision, Binocular , Animals , Fluorescence , Indocyanine Green , Mice , Mice, Nude
7.
Mol Imaging Biol ; 17(5): 671-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25790774

ABSTRACT

PURPOSE: Single photon emission computed tomography (SPECT) radionuclide pairs having distinct decay rates and different energy maxima enable simultaneous detection of dual gamma signals and real-time assessment of dynamic functional and molecular processes in vivo. Here, we report image acquisition and quantification protocols for a single molecule labeled with two different radionuclides for functional SPECT imaging. PROCEDURES: LS370 and LS734 were prepared using modular solid phase peptide synthesis. Each agent has a caspase-3 cleavable reporting motif, flanked by a tyrosine residue and a chelator at the opposite end of molecule. Cell uptake and efflux were assessed in human MDA-MB-231 breast cancer cells. Biodistribution studies were conducted in tumor naive and orthotopic 4T1 metastatic breast cancer tumor mice. NanoSPECT dual-imaging validation and attenuation correction parameters were developed using phantom vials containing varying radionuclide concentrations. Proof-of-principle SPECT imaging was performed in MMTV-PyMT transgenic mice. RESULTS: LS370 and LS734 were singly or dually radiolabeled with (125)I and (111)In or (99m)Tc. Cell assays demonstrated 11-fold higher percent uptake (P < 0.001) of [(125)I]LS734 (3.6 ± 0.5) compared to [(125)I]LS370 (0.3 ± 0.3) at 2 h. Following chemotherapy, cellular retention of [(125)I]LS734 was 3-fold higher (P < 0.05) than untreated cells. Pharmacokinetics at 1 h postinjection demonstrated longer blood retention (%ID/g) for [(125)I]LS734 (3.2 ± 0.9) compared to [(125)I]LS370 (1.6 ± 0.1). In mice bearing bilateral orthotopic 4T1 tumors, the uptake (%ID/g) was 2.4 ± 0.3 for [(125)I]LS734 and 1.2 ± 0.03 for [(125)I]LS370. The iodinated tyrosine peptide residue label was stable under in vitro conditions for up to 24 h; rapid systemic deiodination (high thyroid uptake) was observed in vivo. Phantom studies using standards demonstrated deconvolution of radionuclide signals based on different gamma ray energies. In MMTV-PyMT mice imaged with dual-labeled [(111)In]-[(125)I]LS734, the gamma signals were separable and quantifiable. CONCLUSIONS: Image processing protocols were developed for quantitative signal separation resulting from a caspase-3 responsive dual-radiolabeled SPECT probe. Crosstalk unmixing was obtained for multiradionuclide NanoSPECT imaging. In vitro and in vivo data demonstrated structure-activity relationships for developing functional agents for ratiometric SPECT imaging.


Subject(s)
Molecular Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Radiopharmaceuticals/pharmacokinetics , Tomography, Emission-Computed, Single-Photon/methods , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Caspase 3 , Cell Line, Tumor , Female , Humans , Hydrolysis , Mice , Mice, Inbred BALB C , Neoplasms/pathology , Radiopharmaceuticals/chemistry , Tissue Distribution
8.
J Biomed Opt ; 19(12): 126002, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25473883

ABSTRACT

Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6 ± 1.65) and flat lesions (12.1 ± 1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.42) Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy.


Subject(s)
Colitis/pathology , Colonic Neoplasms/pathology , Endoscopy/methods , Fluorescence Polarization/methods , Image Interpretation, Computer-Assisted/methods , Spectroscopy, Near-Infrared/methods , Animals , Colon/pathology , Equipment Design , Mice , Precancerous Conditions
9.
J Nucl Med ; 54(4): 639-46, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23447655

ABSTRACT

UNLABELLED: Spatial and temporal coregistration of nuclear and optical images can enable the fusion of the information from these complementary molecular imaging modalities. A critical challenge is in integrating the optical and nuclear imaging hardware. Flexible fiber-based fluorescence-mediated tomography (FMT) systems provide a viable solution. The various bore sizes of small-animal nuclear imaging systems can potentially accommodate the FMT fiber imaging arrays. In addition, FMT imaging facilitates coregistration of the nuclear and optical contrasts in time. Herein, we combine a fiber-based FMT system with a preclinical SPECT/CT platform. Feasibility of in vivo imaging is demonstrated by tracking a monomolecular multimodal imaging agent (MOMIA) during transport from the forepaw to the axillary lymph node region of a rat. METHODS: The fiber-based, video-rate FMT imaging system is composed of 12 sources (785- and 830-nm laser diodes) and 13 detectors. To maintain high temporal sampling, the system simultaneously acquires ratio-metric data at each detector. A 3-dimensional finite element model derived from CT projections provides anatomically based light propagation modeling. Injection of a MOMIA intradermally into the forepaw of rats provided spatially and temporally coregistered nuclear and optical contrasts. FMT data were acquired concurrently with SPECT and CT data. The incorporation of SPECT data as a priori information in the reconstruction of FMT data integrated both optical and nuclear contrasts. RESULTS: Accurate depth localization of phantoms with different thicknesses was accomplished with an average center-of-mass error of 4.1 ± 2.1 mm between FMT and SPECT measurements. During in vivo tests, fluorescence and radioactivity from the MOMIA were colocalized in spatially coincident regions with an average center-of-mass error of 2.68 ± 1.0 mm between FMT and SPECT for axillary lymph node localization. Intravital imaging with surgical exposure of the lymph node validated the localization of the optical contrast. CONCLUSION: The feasibility of integrating a fiber-based, video-rate FMT system with a commercial preclinical SPECT/CT platform was established. These coregistered FMT and SPECT/CT results with MOMIAs may facilitate the development of the next generation of preclinical and clinical multimodal optical-nuclear platforms for a broad array of imaging applications and help elucidate the underlying biologic processes relevant to cancer diagnosis and therapy monitoring.


Subject(s)
Multimodal Imaging/methods , Positron-Emission Tomography , Tomography, Optical/methods , Tomography, X-Ray Computed , Animals , Feasibility Studies , Female , Image Processing, Computer-Assisted , Multimodal Imaging/instrumentation , Rats , Rats, Sprague-Dawley , Spectrometry, Fluorescence , Tomography, Optical/instrumentation
10.
Nucl Med Biol ; 39(5): 609-16, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22261146

ABSTRACT

INTRODUCTION: Bombesin (BN) is an amphibian peptide that binds to the gastrin-releasing peptide receptor (GRPR). It has been demonstrated that BN analogues can be radiolabeled for potential diagnosis and treatment of GRPR-expressing malignancies. Previous studies have conjugated various chelators to the eight C-terminal amino acids of BN [BN(7-14)] for radiolabeling with 64Cu. Recently, (1,4,7-triazacyclononane-1,4,7-triacetic acid) (NOTA) has been evaluated as the five-coordinate 64Cu complex, with results indicating GRPR-specific tumor uptake. This study aimed to conjugate S-2-(4-isothiocyanatobenzyl)-NOTA (p-SCN-Bn-NOTA) to BN(7-14) such that it could form a six-coordinate complex with 64Cu and to evaluate the resulting peptide. METHODS: p-SCN-NOTA was conjugated to 8-aminooctanoic acid (Aoc)-BN(7-14) in solution to yield NOTA-Bn-SCN-Aoc-BN(7-14). The unlabeled peptide was evaluated in a cell binding assay using PC-3 prostate cancer cells and 125I-Tyr4-BN to determine the IC50 value. The peptide was radiolabeled with 64Cu and evaluated for internalization into PC-3 cells and for tumor uptake in mice bearing PC-3 xenografts using biodistribution and micro-positron emission tomography imaging studies. RESULTS: The binding assay demonstrated that NOTA-Bn-SCN-Aoc-BN(7-14) bound with high affinity to GRPR with an IC50 of 1.4 nM. The radiolabeled peptide demonstrated time-dependent internalization into PC-3 cells. In vivo, the peptide demonstrated tumor-specific uptake and imaging that were comparable to those of previously reported 64Cu-labeled BN analogues. CONCLUSIONS: These studies demonstrate that 64Cu-NOTA-Bn-SCN-Aoc-BN(7-14) binds to GRPR-expressing cells and that it can be used for imaging of GRPR-expressing prostate cancer.


Subject(s)
Bombesin/metabolism , Caprylates/chemistry , Copper Radioisotopes , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds/chemistry , Isothiocyanates/chemistry , Prostatic Neoplasms/pathology , Receptors, Bombesin/metabolism , Animals , Binding, Competitive , Biological Transport , Bombesin/analogs & derivatives , Bombesin/pharmacokinetics , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , Humans , Isotope Labeling , Male , Mice , Multimodal Imaging , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Tomography, X-Ray Computed
11.
Surgery ; 149(5): 689-98, 2011 May.
Article in English | MEDLINE | ID: mdl-21496565

ABSTRACT

BACKGROUND: Current cancer management faces several challenges, including the occurrence of a residual tumor after resection, the use of radioactive materials or high concentrations of blue dyes for sentinel lymph node biopsy, and the use of bulky systems in surgical suites for image guidance. To overcome these limitations, we developed a real-time, intraoperative imaging device that, when combined with near infrared fluorescent molecular probes, can aid in the identification of tumor margins, guide surgical resections, map sentinel lymph nodes, and transfer acquired data wirelessly for remote analysis. METHODS: We developed a new compact, wireless, wearable, and battery-operated device that allows for hands-free operation by surgeons. A charge-coupled device-based, consumer-grade night vision viewer was used to develop the detector portion of the device, and the light source portion was developed from a compact headlamp. This piece was retrofitted to provide both near infrared excitation and white light illumination simultaneously. Wireless communication was enabled by integrating a battery-operated, miniature, radio-frequency video transmitter into the system. We applied the device in several types of oncologic surgical procedures in murine models, including sentinel lymph node mapping, fluorescence-guided tumor resection, and surgery under remote expert guidance. RESULTS: Unlike conventional imaging instruments, the device displays fluorescence information directly on its eyepiece. When employed in sentinel lymph node mapping, the locations of sentinel lymph nodes were visualized clearly, even with tracer level dosing of a near infrared fluorescent dye (indocyanine green). When used in tumor resection, tumor margins and small nodules invisible to the naked eye were visualized readily. In a simulated, point-of-care setting, tumors were located successfully and removed under remote guidance using the wireless feature of the device. Importantly, the total cost of this prototype system ($1200) is substantially less than existing imaging instruments. CONCLUSION: Our results demonstrate the feasibility of using the new device to aid surgical resection of tumors, map sentinel lymph nodes, and facilitate telemedicine.


Subject(s)
Eye Protective Devices , Fluorescence , Neoplasms/surgery , Surgery, Computer-Assisted/instrumentation , Animals , Humans , Lymph Nodes/pathology , Lymph Nodes/surgery , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Models, Animal , Neoplasms/pathology , Sentinel Lymph Node Biopsy/instrumentation , Sentinel Lymph Node Biopsy/methods , Surgery, Computer-Assisted/methods , Telemedicine , Transplantation, Heterologous
12.
Biochemistry ; 50(13): 2691-700, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21329363

ABSTRACT

We demonstrate that the structure of carbocyanine dyes, which are commonly used to label small peptides for molecular imaging and not the bound peptide, controls the rate of extravasation from blood vessels to tissue. By examining several near-infrared (NIR) carbocyanine fluorophores, we demonstrate a quantitative correlation between the binding of a dye to albumin, a model plasma protein, and the rate of extravasation of the probe into tissue. Binding of the dyes was measured by fluorescence quenching of the tryptophans in albumin and was found to be inversely proportional to the rate of extravasation. The rate of extravasation, determined by kurtosis from longitudinal imaging studies using rodent ear models, provided a basis for quantitative measurements. Structure-activity studies aimed at evaluating a representative library of NIR fluorescent cyanine probes showed that hydrophilic dyes with binding constants several orders of magnitude lower than their hydrophobic counterparts have much faster extravasation rate, establishing a foundation for rational probe design. The correlation provides a guideline for dye selection in optical imaging and a method to verify if a certain dye is optimal for a specific molecular imaging application.


Subject(s)
Carbocyanines/metabolism , Fluorescent Dyes/metabolism , Molecular Imaging/methods , Molecular Probes/metabolism , Oligopeptides/metabolism , Animals , Carbocyanines/chemistry , Carbocyanines/pharmacokinetics , Extravasation of Diagnostic and Therapeutic Materials , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , Hydrophobic and Hydrophilic Interactions , Kinetics , Mice , Molecular Probes/chemistry , Molecular Probes/pharmacokinetics , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Serum Albumin, Bovine/metabolism , Structure-Activity Relationship
13.
J Nucl Med ; 52(3): 470-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21321264

ABSTRACT

UNLABELLED: Bombesin is a 14-amino-acid amphibian peptide that binds with high affinity to the gastrin-releasing peptide receptor (GRPR), which is overexpressed on a variety of solid tumors. It has been demonstrated that bombesin analogs can be radiolabeled with a variety of radiometals for potential diagnosis and treatment of GRPR-positive tumors. In this regard, several studies have used different chelators conjugated to the 8 C-terminal amino acids of bombesin(7-14) for radiolabeling with (64)Cu. These analogs have demonstrated GRPR-specific small-animal PET of tumors but have various advantages and disadvantages. The objective of this study was to conjugate the previously described (1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]-eicosane-1,8-diamine) (SarAr) chelator to bombesin(7-14), radiolabel the conjugate with (64)Cu, and evaluate in vitro and in vivo. METHODS: SarAr was synthesized as previously published and conjugated to bombesin(7-14) by solid-phase peptide synthesis using standard Fmoc chemistry. Succinic acid (SA), 8-aminooctanoic acid (Aoc), and Gly-Ser-Gly (GSG) were used as linkers between SarAr and bombesin(7-14) to yield the resulting SarAr-SA-Aoc-bombesin(7-14) and SarAr-SA-Aoc-GSG-bombesin(7-14) peptides. The unlabeled peptides were evaluated in a competitive binding assay using PC-3 prostate cancer cells and (125)I-Tyr(4)-bombesin to determine the inhibitory concentration of 50%. The peptides were radiolabeled with (64)Cu and evaluated for internalization into PC-3 cells in vitro and for in vivo tumor uptake in mice bearing PC-3 xenografts using biodistribution and small-animal PET/CT studies. RESULTS: The competitive binding assay demonstrated that both SarAr-SA-Aoc-bombesin(7-14) and SarAr-SA-Aoc-GSG-bombesin(7-14) bound with high affinity to GRPR with an inhibitory concentration of 50% of 3.5 and 4.5 nM, respectively. Both peptides were radiolabeled with (64)Cu at room temperature without further purification and demonstrated similar internalization into PC-3 cells. In vivo, the radiolabeled peptides demonstrated tumor-specific uptake (13.0 and 8.5 percentage injected dose per gram for (64)Cu-SarAr-SA-Aoc-bombesin(7-14) and (64)Cu-SarAr-SA-Aoc-GSG-bombesin(7-14), respectively, at 1 h) and imaging that was comparable to, or better than, that of the previously reported (64)Cu-labeled bombesin analogs. The (64)Cu-SarAr-SA-Aoc-GSG-bombesin(7-14) had more rapid blood clearance and lower tumor and normal-tissue uptake than (64)Cu-SarAr-SA-Aoc-bombesin(7-14), resulting in similar tumor-to-blood ratios for each analog (15.1 vs. 11.3 for (64)Cu-SarAr-SA-Aoc-bombesin(7-14) and (64)Cu-SarAr-SA-Aoc-GSG-bombesin(7-14), respectively, at 1 h). CONCLUSION: These studies demonstrate that (64)Cu-SarAr-SA-Aoc-bombesin(7-14) and (64)Cu-SarAr-SA-Aoc-GSG-bombesin(7-14) bound with high affinity to GRPR-expressing cells and that these peptides can be used for PET of GRPR-expressing prostate cancer.


Subject(s)
Bombesin/pharmacokinetics , Copper Radioisotopes/pharmacokinetics , Gastrin-Releasing Peptide/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Animals , Bombesin/analogs & derivatives , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Female , Humans , Isotope Labeling/methods , Male , Metabolic Clearance Rate , Mice , Organ Specificity , Radionuclide Imaging , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
14.
J Biomed Opt ; 14(4): 040507, 2009.
Article in English | MEDLINE | ID: mdl-19725712

ABSTRACT

Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with (64)Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters k(cat) and K(M) of 0.55+/-0.01 s(-1) and 1.12+/-0.06 microM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled (64)Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.


Subject(s)
Caspase 3/metabolism , Microscopy, Fluorescence/methods , Molecular Probe Techniques , Radionuclide Imaging/methods , Whole Body Imaging/methods , Animals , Caspase 3/analysis , Mice , Subtraction Technique , Tissue Distribution
15.
Mol Pharm ; 6(2): 416-27, 2009.
Article in English | MEDLINE | ID: mdl-19718795

ABSTRACT

We have developed a generic approach to determine enzyme activities in vitro and monitor their functional status in vivo. Specifically, a method to generate donor (CbOH)-acceptor (Me2NCp) near-infrared (NIR) fluorescent dye pairs for preparing enzyme activatable molecular systems were developed based on the structural template of heptamethine cyanine dyes. Using caspase-3 as a model enzyme, we prepared two new caspase-3 sensitive compounds with high fluorescence quenching efficiency: Me2NCp-DEVD-K(CbOH)-OH (4) and AcGK(Me2NCp)-DEVD-APK(CbOH)-NH2 (5). The mechanism of quenching was based on combined effects of direct (classical) and reverse fluorescence resonance energy transfer (FRET). Caspase-3 cleavage of the scissile DEVD amide bond regenerated the NIR fluorescence of both donor and acceptor dyes. While both compounds were cleaved by caspase-3, substrate 5 was cleaved more readily than 4, yielding k(cat) and K(M), values of 1.02 +/- 0.06 s(-1) and 15 +/- 3 microM, respectively. Treatment of A549 tumor cells with paclitaxel resulted in > 2-fold increase in the fluorescence intensity by NIR confocal microscopy, suggesting the activation of pro-caspase-3 to caspase-3. A similar trend was observed in a mouse model, where the fluorescence intensity was nearly twice the value in caspase-3-rich tissue relative to the control. These results demonstrate the use of the same NIR activatable molecular systems for monitoring the activities of enzymes across a wide spatial scale ranging from in vitro kinetics measurements to in cellulo and in vivo localization of caspase-3 activation. The NIR activatable molecular probes provide an effective strategy to screen new drugs in vitro and monitor treatment response in living organisms.


Subject(s)
Caspase 3/metabolism , Fluorescent Dyes/chemistry , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Enzyme Activation , Fluorescence , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemical synthesis , Humans , In Vitro Techniques , Kinetics , Lung Neoplasms/enzymology , Male , Mice , Microscopy, Fluorescence , Models, Molecular , Paclitaxel/pharmacology , Tumor Cells, Cultured
16.
J Nucl Med ; 49(11): 1819-27, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18927338

ABSTRACT

UNLABELLED: Recently, the somatostatin receptor subtype 2 (SSTR2) selective antagonist sst2-ANT was determined to have a high affinity for SSTR2. Additionally, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-sst2-ANT showed high uptake in an SSTR2-transfected, tumor-bearing mouse model and suggested that radiolabeled SSTR2 antagonists may be superior to agonists for imaging SSTR2-positive tumors. This report describes the synthesis and evaluation of 64Cu-CB-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-sst2-ANT (64Cu-CB-TE2A-sst2-ANT) as a PET radiopharmaceutical for the in vivo imaging of SSTR2-positive tumors. METHODS: Receptor-binding studies were performed to determine the dissociation constant of the radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT using AR42J rat pancreatic tumor cell membranes. The internalization of 64Cu-CB-TE2A-sst2-ANT was compared with that of the 64Cu-labeled agonist 64Cu-CB-TE2A-tyrosine3-octreotate (64Cu-CB-TE2A-Y3-TATE) in AR42J cells. Both radiopharmaceuticals were also compared in vivo through biodistribution studies using healthy rats bearing AR42J tumors, and small-animal PET/CT of 64Cu-CB-TE2A-sst2-ANT was performed. RESULTS: The dissociation constant value for the radiopharmaceutical was determined to be 26 +/- 2.4 nM, and the maximum number of binding sites was 23,000 fmol/mg. 64Cu-CB-TE2A-sst2-ANT showed significantly less internalization than did 64Cu-CB-TE2A-Y3-TATE at time points from 15 min to 4 h. Biodistribution studies revealed that the clearance of 64Cu-CB-TE2A-sst2-ANT from the blood was rapid, whereas the clearance of 64Cu-CB-TE2A-sst2-ANT from the liver and kidneys was more modest at all time points. Tumor-to-blood and tumor-to-muscle ratios were determined to be better for 64Cu-CB-TE2A-sst2-ANT than those for 64Cu-CB-TE2A-Y3-TATE at the later time points, although liver and kidney uptake was significantly higher. Small-animal imaging using 64Cu-CB-TE2A-sst2-ANT revealed excellent tumor-to-background contrast at 4 h after injection, and standardized uptake values remained high even after 24 h. CONCLUSION: The PET radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT is an attractive agent, worthy of future study as a PET radiopharmaceutical for the imaging of somatostatin receptor-positive tumors.


Subject(s)
Neoplasms/diagnostic imaging , Neoplasms/metabolism , Organometallic Compounds/chemistry , Peptides/chemistry , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Male , Peptides/metabolism , Peptides/pharmacokinetics , Positron-Emission Tomography , Radiochemistry , Radiopharmaceuticals/chemistry , Rats , Tissue Distribution
17.
Bioconjug Chem ; 19(1): 192-200, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18020401

ABSTRACT

The combination of different imaging modalities, each providing information according to its strengths, can be a powerful method for diagnosing diseases. We have synthesized a monomolecular multimodal imaging agent (MOMIA), LS172, containing a subtype-2 somatostatin receptor (SSTr2)-avid peptide (Y3-octreotate or Y3-TATE), a radiometal chelating group (DOTA) and a near-infrared (NIR) fluorescent dye (cypate). In addition to optical methods, radiolabeling LS172 with 64Cu and 177Lu provides a strategy for in vitro evaluation or in vivo multimodal imaging by positron emission tomography (PET) and single photon emission computed tomography (SPECT), respectively. Determination of the binding affinity of LS172, nat Cu- and nat Lu-LS172 in SSTr2-transfected A427 cells (A427-7) showed that they all displayed high binding affinity toward SSTr2 with K i values of 0.234 nM, 11.5 nM, and 2.15 nM respectively. In contrast to cypate-labeled Y3-TATE (cytate), fluorescence microscopy showed that LS172 and nat Cu-LS172 accumulate modestly in A427-7 cells by SSTr2-mediated endocytosis, in spite of their relatively high binding affinity. In vivo, the biodistribution of the SSTr2 receptor specific 64Cu- and 177Lu-LS172 in AR42J tumor-bearing rats exhibited low (90% ID/liver). Both optical and radionuclear biodistribution studies showed a similar in vivo distribution profile. Surprisingly, the strong binding of LS172 to SSTr2 did not translate into high SSTr2-mediated endocytosis in cells or uptake in tumor in vivo. Considering that LS172 is a putative antagonist, the poor accumulation of the labeled MOMIAs in SSTr2 positive tumor tissue supports the paradigm that agonists with their concomitant internalization favors appreciable target tissue accumulation of receptor-specific ligands.


Subject(s)
Receptors, Somatostatin/metabolism , Animals , Cell Line , Copper Radioisotopes/pharmacokinetics , Endocytosis , Fluorescent Dyes , Humans , Lutetium/pharmacokinetics , Mice , Microscopy, Fluorescence , Positron-Emission Tomography , Rats , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Tomography, Emission-Computed, Single-Photon
18.
FEBS Lett ; 581(9): 1793-9, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17416362

ABSTRACT

The nuclear internalization of biomolecules by Tat peptide provides a mechanism to deliver drugs to cells. However, translocation of molecular imaging probes to the nucleus may induce undesirable mutagenesis. To assess the feasibility of retaining its cell permeating effect without nuclear translocation, Tat-peptide was conjugated with a somatostatin receptor (STR)-avid ligand (Oct) and labeled with fluorescent dyes. The results show that Tat-Oct-5-FAM (fluorescein 5'-carboxylic acid) remained in the cytoplasm of STR-positive AR42J cells. Co-incubation of Tat-Oct-5-FAM with ATP induced nuclear translocation. These data suggest that both dye and Oct-STR endocytosis complex could modulate nuclear internalization of Tat peptides.


Subject(s)
Cell Nucleus/metabolism , Fluorescent Dyes/pharmacokinetics , Gene Products, tat/pharmacokinetics , Peptide Fragments/pharmacokinetics , Peptides, Cyclic/pharmacokinetics , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Carbocyanines/chemical synthesis , Carbocyanines/pharmacokinetics , Endocytosis , Gene Products, tat/chemical synthesis , Gene Products, tat/chemistry , Humans , Models, Biological , Molecular Sequence Data , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptides, Cyclic/chemistry , Rats , Receptors, Somatostatin/metabolism , Tumor Cells, Cultured , Xanthenes/chemical synthesis , Xanthenes/pharmacokinetics , tat Gene Products, Human Immunodeficiency Virus
19.
Mol Pharm ; 3(5): 539-49, 2006.
Article in English | MEDLINE | ID: mdl-17009853

ABSTRACT

Biomolecules containing the RGD peptide sequence are known to bind integrins with high affinity. Studies of hexa-and hepta-peptides labeled with a near-infrared fluorescent probe (cypate) showed that rearranging the glycine in a linear RGD peptide sequence to form the GRD analogue favored the uptake of the GRD compound by alphavbeta3 integrin receptor (ABIR)-positive A549 tumor cells and tissue. The internalization of the GRD compound in A549 cells and tumor uptake in mice were inhibited by ABIR-avid peptides, suggesting its recognition by this receptor. Further studies with functional blocking antibodies and beta3 knockout cells revealed that beta3 integrin mediates the internalization of the cypate-GRD peptide. Molecular modeling studies supported preferential interaction of the probe with the beta3 subunit of integrins relative to the alphav subunit. The results demonstrate that the cypate-GRD peptide targets beta3 integrin, thereby providing a strategy to monitor drug delivery and efficacy, and physiopathologic processes mediated by this protein.


Subject(s)
Fluorescent Dyes/chemistry , Integrin beta Chains/metabolism , Molecular Probes/chemistry , Oligopeptides/pharmacology , Animals , Binding, Competitive , Blotting, Western , Cell Line , Cell Line, Tumor , Humans , Integrin beta Chains/genetics , Mice , Mice, Nude , Microscopy, Confocal , Molecular Structure , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Mutation , Oligopeptides/chemistry , Oligopeptides/metabolism , Spectroscopy, Near-Infrared/methods , Time Factors , Xenograft Model Antitumor Assays
20.
Nucl Med Biol ; 33(2): 227-37, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16546677

ABSTRACT

INTRODUCTION: Overexpression of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, has been correlated with poor prognosis in several cancer types including lung, colon and breast. Noninvasive detection of MMP expression might allow physicians to better determine when more aggressive cancer therapy is appropriate. The peptide CTT (CTTHWGFTLC) was identified as a selective inhibitor of MMP-2/9 that inhibits the growth of MDA-MB-435 human breast cancer xenografts. METHODS: CTT was conjugated with the bifunctional chelator DOTA (1,4,7,10-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid) for radiolabeling with (64)Cu (t(1/2)=12.7 h, 17.4% beta(+), 39% beta(-)), a radionuclide suitable for positron emission tomography (PET). In vitro affinity was determined in a fluorogenic substrate assay. Tumor gelatinase targeting was evaluated in both biodistribution and microPET imaging studies. RESULTS: Cu(II)-DOTA-CTT inhibited hMMP-2 (EC(50)=8.7 microM) and mMMP-9 (EC(50)=18.2 microM) with similar affinity to CTT (hMMP-2 EC(50)=13.2 microM; mMMP-9 EC(50)=11.0 microM). In biodistribution and microPET imaging studies, (64)Cu-DOTA-CTT was taken up by MMP-2/9-positive B16F10 murine melanoma tumors. Subsequently, imaging studies using (64)Cu-DOTA-CTT were performed on MDA-MB-435 tumor-bearing mice. With zymography, tumor MMP-2/9 expression in this model was shown to be inconsistent, resulting in microPET detection of the MDA-MB-435 tumor in only 1 of 24 imaged mice. Following limited imaging success, (64)Cu-DOTA-CTT was shown to have poor in vivo stability. CONCLUSIONS: Despite some evidence for selective uptake of (64)Cu-DOTA-CTT by gelatinase-expressing tumors, the low affinity for MMP-2 and MMP-9 and in vivo instability make this an inadequate radioligand for in vivo tumor evaluation.


Subject(s)
Biomarkers, Tumor/metabolism , Disease Models, Animal , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Melanoma/metabolism , Melanoma/secondary , Oligopeptides/physiology , Animals , Cell Line, Tumor , Male , Melanoma/diagnostic imaging , Metabolic Clearance Rate , Mice , Mice, Inbred C57BL , Organometallic Compounds , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...