Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(21): e2301215120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186827

ABSTRACT

Plasma metabolite concentrations and labeling enrichments are common measures of organismal metabolism. In mice, blood is often collected by tail snip sampling. Here, we systematically examined the effect of such sampling, relative to gold-standard sampling from an in-dwelling arterial catheter, on plasma metabolomics and stable isotope tracing. We find marked differences between the arterial and tail circulating metabolome, which arise from two major factors: handling stress and sampling site, whose effects were deconvoluted by taking a second arterial sample immediately after tail snip. Pyruvate and lactate were the most stress-sensitive plasma metabolites, rising ~14 and ~5-fold. Both acute handling stress and adrenergic agonists induce extensive, immediate production of lactate, and modest production of many other circulating metabolites, and we provide a reference set of mouse circulatory turnover fluxes with noninvasive arterial sampling to avoid such artifacts. Even in the absence of stress, lactate remains the highest flux circulating metabolite on a molar basis, and most glucose flux into the TCA cycle in fasted mice flows through circulating lactate. Thus, lactate is both a central player in unstressed mammalian metabolism and strongly produced in response to acute stress.


Subject(s)
Glucose , Metabolomics , Animals , Mice , Glucose/metabolism , Citric Acid Cycle , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Carbon Isotopes/metabolism , Isotope Labeling , Mammals/metabolism
2.
Pharmacol Ther ; 224: 107827, 2021 08.
Article in English | MEDLINE | ID: mdl-33662451

ABSTRACT

Metabolic reprogramming is a hallmark of cancer and increasing evidence suggests that reprogrammed cell metabolism supports tumor initiation, progression, metastasis and drug resistance. Understanding metabolic dysregulation may provide therapeutic targets and facilitate drug research and development for cancer therapy. Metabolomics enables the high-throughput characterization of a large scale of small molecule metabolites in cells, tissues and biofluids, while metabolic flux analysis (MFA) tracks dynamic metabolic activities using stable isotope tracer methods. Recent advances in metabolomics and MFA technologies make them powerful tools for metabolic profiling and characterizing metabolic activities in health and disease, especially in cancer research. In this review, we introduce recent advances in metabolomics and MFA analytical technologies, and provide the first comprehensive summary of the most commonly used isotope tracing methods. In addition, we highlight how metabolomics and MFA are applied in cancer pharmacology studies particularly for discovering targetable metabolic vulnerabilities, understanding the mechanisms of drug action and drug resistance, exploring potential strategies with dietary intervention, identifying cancer biomarkers, as well as enabling precision treatment with pharmacometabolomics.


Subject(s)
Metabolic Flux Analysis , Metabolomics , Neoplasms , Humans , Neoplasms/drug therapy
3.
Cell Metab ; 31(4): 809-821.e6, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32187526

ABSTRACT

NADH provides electrons for aerobic ATP production. In cells deprived of oxygen or with impaired electron transport chain activity, NADH accumulation can be toxic. To minimize such toxicity, elevated NADH inhibits the classical NADH-producing pathways: glucose, glutamine, and fat oxidation. Here, through deuterium-tracing studies in cultured cells and mice, we show that folate-dependent serine catabolism also produces substantial NADH. Strikingly, when respiration is impaired, serine catabolism through methylene tetrahydrofolate dehydrogenase (MTHFD2) becomes a major NADH source. In cells whose respiration is slowed by hypoxia, metformin, or genetic lesions, mitochondrial serine catabolism inhibition partially normalizes NADH levels and facilitates cell growth. In mice with engineered mitochondrial complex I deficiency (NDUSF4-/-), serine's contribution to NADH is elevated, and progression of spasticity is modestly slowed by pharmacological blockade of serine degradation. Thus, when respiration is impaired, serine catabolism contributes to toxic NADH accumulation.


Subject(s)
Cell Hypoxia , Mitochondria/metabolism , NAD/metabolism , Oxygen/metabolism , Serine/metabolism , Animals , Cell Line , Humans , Mice , Mice, Inbred C57BL , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...