Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441416

ABSTRACT

Radiation therapy is a primary treatment for hepatocellular carcinoma (HCC), but its effectiveness can be diminished by various factors. The over-expression of PD-L1 has been identified as a critical reason for radiotherapy resistance. Previous studies have demonstrated that nifuroxazide exerts antitumor activity by damaging the Stat3 pathway, but its efficacy against PD-L1 has remained unclear. In this study, we investigated whether nifuroxazide could enhance the efficacy of radiotherapy in HCC by reducing PD-L1 expression. Our results showed that nifuroxazide significantly increased the sensitivity of tumor cells to radiation therapy by inhibiting cell proliferation and migration while increasing apoptosis in vitro. Additionally, nifuroxazide attenuated the up-regulation of PD-L1 expression induced by irradiation, which may be associated with increased degradation of PD-L1 through the ubiquitination-proteasome pathway. Furthermore, nifuroxazide greatly enhanced the efficacy of radiation therapy in H22-bearing mice by inhibiting tumor growth, improving survival, boosting the activation of T lymphocytes, and decelerating the ratios of Treg cells in spleens. Importantly, nifuroxazide limited the increased expression of PD-L1 in tumor tissues induced by radiation therapy. This study confirms, for the first time, that nifuroxazide can augment PD-L1 degradation to improve the efficacy of radiation therapy in HCC-bearing mice.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nitrofurans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/radiotherapy , B7-H1 Antigen , Liver Neoplasms/drug therapy , Liver Neoplasms/radiotherapy , Hydroxybenzoates
2.
Int Immunopharmacol ; 127: 111362, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38103411

ABSTRACT

Melanoma, the most perilous form of skin cancer, is known for its inherent resistance to chemotherapy. Even with advances in tumor immunotherapy, the survival of patients with advanced or recurrent melanomas remains poor. Over time, melanoma tumor cells may produce excessive angiogenic factors, necessitating the use of combinations of angiogenesis inhibitors, including broad-spectrum options, to combat melanoma. Among these inhibitors, Endostatin is one of the most broad-spectrum and least toxic angiogenesis inhibitors. We found Endostatin significantly increased the infiltration of CD8+ T cells and reduced the infiltration of M2 tumor-associated macrophages (TAMs) in the melanoma tumor microenvironment (TME). Interestingly, we also observed high expression levels of programmed death 1 (PD-1), an essential immune checkpoint molecule associated with tumor immune evasion, within the melanoma tumor microenvironment despite the use of Endostatin. To address this issue, we investigated the effects of a plasmid expressing Endostatin and PD-1 siRNA, wherein Endostatin was overexpressed while RNA interference (RNAi) targeted PD-1. These therapeutic agents were delivered using attenuated Salmonella in melanoma-bearing mice. Our results demonstrate that pEndostatin-siRNA-PD-1 therapy exhibits optimal therapeutic efficacy against melanoma. We found that pEndostatin-siRNA-PD-1 therapy promotes the infiltration of CD8+ T cells and the expression of granzyme B in melanoma tumors. Importantly, combined inhibition of angiogenesis and PD-1 significantly suppresses melanoma tumor progression compared with the inhibition of angiogenesis or PD-1 alone. Based on these findings, our study suggests that combining PD-1 inhibition with angiogenesis inhibitors holds promise as a clinical strategy for the treatment of melanoma.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Mice , Animals , Endostatins/genetics , Endostatins/therapeutic use , Endostatins/metabolism , Programmed Cell Death 1 Receptor/genetics , Vascular Endothelial Growth Factor A/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , CD8-Positive T-Lymphocytes/metabolism , Neoplasm Recurrence, Local/drug therapy , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Angiogenesis Inhibitors/therapeutic use , Plasmids , Salmonella/genetics , Tumor Microenvironment
3.
Cell Death Discov ; 9(1): 318, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640735

ABSTRACT

Hepatocellular carcinoma (HCC), the most prevalent type of aggressive liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Despite recent advancements in HCC treatment, it remains one of the deadliest cancers. Radiation therapy (RT) is among the locoregional therapy modalities employed to treat unresectable or medically inoperable HCC. However, radioresistance poses a significant challenge. It has been demonstrated that RT induced the upregulation of programmed death ligand 1 (PD-L1) on tumor cells, which may affect response to PD-1-based immunotherapy, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. Here, we utilized attenuated Salmonella as a carrier to explore whether attenuated Salmonella carrying siRNA-PD-L1 could effectively enhance the antitumor effect of radiotherapy on HCC-bearing mice. Our results showed that a combination of siRNA-PD-L1 and radiotherapy had a synergistic antitumor effect by inhibiting the expression of PD-L1 induced by radiation therapy. Mechanistic insights indicated that the combination treatment significantly suppressed tumor cell proliferation, promoted cell apoptosis, and stimulated immune cell infiltration and activation in tumor tissues. Additionally, the combination treatment increased the ratios of CD4+ T, CD8+ T, and NK cells from the spleen in tumor-bearing mice. This study presents a novel therapeutic strategy for HCC treatment, especially for patients with RT resistance.

4.
Int Immunopharmacol ; 111: 109127, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35964407

ABSTRACT

Hepatocellular carcinoma (HCC) is a primary liver cancer representing serious harm to human health. The effective treatment of HCC is challenging. Lenvatinib is an inhibitor of polytyrosine kinase that exerts an effect against HCC by blocking the VEGF signaling pathway. However, its efficacy in most patients remains unsatisfactory. The factors influencing tumorigenesis are diverse; thus, combined treatment is an important strategy against tumors. Programmed death ligand-1 (PD-L1), which binds to programmed death-1 (PD-1), significantly compromises the anti-tumor effect of T cells. Therefore, we designed a siRNA-PD-L1 and delivered it using attenuated Salmonella, and its synergistic effects with Lenvatinib against HCC were evaluated. The results showed that the combination of Lenvatinib and siRNA-PD-L1 inhibited tumor growth in H22 tumor-bearing mice, arrested cell proliferation, and increased cell apoptosis in the tumor. The combination treatment synergistically inhibited the expression of VEGF and PD-L1 and contributed to the increase in T-cell infiltration in the tumor tissues and the ratio of T cells in the spleen. Furthermore, the combination treatment increased the number of granzyme B+ T cells, indicating a significantly improved anti-tumor immunity in mice. Therefore, this combination might be a potential novel strategy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , B7-H1 Antigen , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice , Phenylurea Compounds , Quinolines , RNA, Small Interfering/genetics , Salmonella/genetics , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...