Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(26): 17784-17792, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38916273

ABSTRACT

Well-established knowledge about inversion-symmetric Bi2TexSe3-x topological insulators characterizes the promising new-generation quantum device. Noticeably, the inversion asymmetric phase containing different surface electronic structures may create an extra topological phenomenon pointing to a new device paradigm. Herein, Janus Bi2TeSe2 single-crystal nanosheets with an unconventional stacking sequence of Se-Bi-Se-Bi-Te are realized via chemical vapor deposition growth, which is clarified by atomically resolved AC-STEM and elemental mapping. An obvious polarization-dependent second-harmonic generation with a representative 6-fold rotational symmetry is detected due to the broken out-of-plane mirror symmetry in this system. Low-temperature transport measurements display a strange metal-like linear-in-temperature resistivity. Anomalous conductance peaks under low magnetic fields induced by the weak antilocalization effect of topological surface states and the two-dimensional transport-dominated anisotropic magnetoresistance are revealed. These findings correlate the Janus Bi2TeSe2 phase with emerging physics topics, which would inspire fresh thoughts in well-developed Bi3TexSe3-x topological insulators and open up opportunities for exploring hybrid nonlinear optoelectronic topological devices.

2.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792040

ABSTRACT

Proanthocyanidins, natural polyphenolic compounds abundantly present in plants, exhibit diverse bioactivities, including antioxidative, anti-inflammatory, and antibacterial effects. These bioactivities are intricately linked to the degree of polymerization of these compounds. Through a comprehensive analysis of recent domestic and international research, this article synthesizes the latest advancements in the extraction process, degradation methods, as well as the biological activities and underlying mechanisms of proanthocyanidins. Furthermore, future research endeavors should prioritize the refinement of extraction techniques, the elucidation of bioactive mechanisms, and the development of formulations with enhanced potency. This will maximize the utilization of proanthocyanidins across diverse applications.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Proanthocyanidins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Proanthocyanidins/pharmacology
3.
Front Nutr ; 11: 1277877, 2024.
Article in English | MEDLINE | ID: mdl-38419855

ABSTRACT

The purpose of this study was to investigate the antioxidant activity of Armillaria gallica polysaccharides. It explored whether Armillaria gallica polysaccharides (AgP) could prevent HepG2 cells from H2O2-induced oxidative damage. The results demonstrated that HepG2 cells were significantly protected by AgP, and efficiently suppressed the production of reactive oxygen species (ROS) in HepG2 cells. Additionally, AgP significantly decreased the abnormal leakage of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) caused by H2O2, protecting cell membrane integrity. It was discovered that AgP was also found to regulate the activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), while reducing malondialdehyde (MDA), thus protecting cells from oxidative damage. According to the flow cytometry analysis and measurement of caspase-3, caspase-8, and caspase-9 activities, AgP could modulate apoptosis-related proteins and attenuate ROS-mediated cell apoptosis.

4.
Front Microbiol ; 14: 1265993, 2023.
Article in English | MEDLINE | ID: mdl-37829446

ABSTRACT

Proanthocyanidins (PCs) extracted from ume have many well-known functional properties. The aim of this study was to explore a novel natural food preservative using ume plum pulp proanthocyanidins (UPPP). The crude product of PCs from ume plum was obtained by using ethanol as extraction solvent and ultrasonic-assisted extraction, and then the pure product of UPPP was obtained by purification with AB-8 resin. The bacteriostatic ability of UPPP and the freshness preservation effect on blueberry were analyzed. The results showed that UPPP had a high inhibitory effect on Staphylococcus aureus (MIC of 1.563 mg/mL) and Escherichia coli (MIC of 3.125 mg/mL). Findings revealed that, in comparison to 0.02% potassium sorbate, blueberries treated with a high concentration of UPPP in a dipping treatment displayed superior quality maintenance after 7 days of storage at 4°C. Importantly, analysis of the various metrics showed that treatment with UPPP was significantly better compared to blueberries treated with 0.02% potassium sorbate. For example, the decay rate, weight loss, and total number of colonies of blueberries treated with 0.02% potassium sorbate were 55.56, 3.48%, and 4.24 ± 0.07 log CFU/mL, whereas the values of the above indexes for blueberries treated with 25 mg/mL of UPPP were 22.22, 3.09%, and 3.10 ± 0.17 log CFU/mL, respectively. Conversely, blueberries that were not dipped in any preservative displayed signs of deterioration as early as the 3rd day of the storage period, highlighting the potential of UPPP as a valuable method for preserving fruits and vegetables. Therefore, UPPP holds great promise as an innovative natural food preservative, effectively enhancing food safety, quality, and extending shelf-life.

5.
Molecules ; 28(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37175230

ABSTRACT

This research investigated the effects of eleutheroside E (EE) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease cell model and its mechanism. Methods: To create a cell model of Parkinson's disease, MPTP (2500 µmol/L) was administered to rat adrenal pheochromocytoma cells (PC-12) to produce an MPTP group. Selegiline (50 µmol/L) and MPTP had been administered to the positive group beforehand. The eleutheroside E group was divided into low-, medium-, and high-concentration groups, in which the cells were pretreated with eleutheroside E at concentrations of 100 µmol/L, 300 µmol/L, and 500 µmol/L. Next, MPTP was added to the cells separately. The CCK-8 method was used to measure the cell survival rate. Apart from the CCK-8 method, mitochondrial membrane potential detection, cell reactive oxygen species (ROS) detection, and other methods were also adopted to verify the effect of low, medium, and high concentrations of eleutheroside E on the MPTP-induced cell model. Western blot analysis was used to detect changes in the expression of intracellular proteins CytC, Nrf2, and NQO1 to clarify the mechanism. The results are as follows. Compared with the MPTP group, the survival rates of cells at low, medium, and high concentrations of eleutheroside E all increased. The mitochondrial membrane potential at medium and high concentrations of eleutheroside E increased. The ROS levels at medium and high concentrations of eleutheroside E decreased. Moreover, the apoptosis rate decreased and the expression levels of the intracellular proteins CytC, Nrf2, and NQO1 were upregulated. Conclusion: Eleutheroside E can improve the MPTP-induced apoptosis of PC-12 cells by increasing the mitochondrial membrane potential and reducing the level of intracellular reactive oxygen species (ROS). Moreover, the apoptosis of cells is regulated by the expression of CytC, Nrf2, and NQO1 proteins.


Subject(s)
Parkinson Disease , Rats , Animals , Mice , Parkinson Disease/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Disease Models, Animal
6.
Small ; 19(33): e2302443, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37156749

ABSTRACT

Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA)2 MAPb2 I7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm-2 under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.

7.
Mater Horiz ; 10(3): 952-959, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36602385

ABSTRACT

Methylammonium lead iodide (MAPbI3) single crystals (SCs) have drawn particular attention in the optoelectronics field, due to their outstanding photoelectric performance. However, the structures of those MAPbI3 SCs are isotropic, which limits the further application of the materials for polarization-sensitive photodetection. Here, we propose a strategy of symmetry modulation by heterogeneously integrating large-sized MAPbI3 SCs with silicon (Si) wafers and we give the first demonstration of self-powered near-infrared (NIR) polarization-sensitive photodetection using MAPbI3 SCs. Created via a delicate solution method, the MAPbI3/Si heterostructures show a high crystalline quality and a solid interfacial connection. More importantly, the built-in electric field resulting from the band bending at the MAPbI3/Si heterostructure interface generates polar symmetry, which enables directional transport of photogenerated carriers, making the MAPbI3/Si heterostructures highly polarization-sensitive. Consequently, in the self-powered mode, NIR photodetectors of MAPbI3/Si heterostructures exhibit large polarization ratios of 3.3 at 785 nm and 2.8 at 940 nm. Moreover, a high detectivity of 7.35 × 1012 Jones of the present devices is also achieved. Our work gives the first demonstration of self-powered polarization-sensitive photodetection of MAPbI3 SCs and provides a strategy to design polarization-sensitive materials beyond the conventional limitations induced by isotropic structures.

8.
ACS Appl Mater Interfaces ; 14(32): 36781-36788, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35917147

ABSTRACT

Chiral metal halide perovskites (CMHPs) have recently shown great potential for direct circularly polarized light (CPL) detection. However, owing to the limited cutoff wavelength edge of these CMHPs, most of the detectors presented thus far are characterized only in the ultraviolet and visible range; CMHPs that target at the near-infrared (NIR) region are still greatly desired. Here, we design a novel CMHP heterostructure, synthesized via solution-processed epitaxial growth of crystalline 3D MAPbI3 on a 2D chiral (R-BPEA)2PbI4 (R-BPEA = (R)-1-(4-bromophenyl)ethylammonium) crystal, and provide the first demonstration of self-powered direct NIR-CPL detection. Compared with individual chiral (R-BPEA)2PbI4, the heterostructure not only retains the spin selectivity but also allows much broader absorbance, especially beyond 780 nm, where the (R-BPEA)2PbI4 cannot absorb. Furthermore, the built-in electric potential in the heterojunction forces spontaneous separation/transport of photogenerated carriers, enabling the fabrication of devices operating without external energy supply. By making use of the abovementioned advantages, the self-powered CPL detectors of the (R-BPEA)2PbI4/MAPbI3 heterostructures hence show competitive circular polarization sensitivity at 785 nm with a high anisotropy factor of up to 0.25. In addition, a large on/off switching ratio of ∼105 and an impressive detectivity of ∼1010 Jones are also achieved. As a pioneer study, our results may broaden the material scope for future chiroptical devices based on CMHPs.

9.
Angew Chem Int Ed Engl ; 61(32): e202205939, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35654743

ABSTRACT

We report the self-assembly of 2D double perovskite (BLA)2 CsAgBiBr7 (BLA=benzylammonium) on 3D Cs2 AgBiBr6 crystals, providing the first demonstration of polarization-sensitive photodetection using lead-free double perovskite heterocrystals (HCs). The (BLA)2 CsAgBiBr7 /Cs2 AgBiBr6 HC successfully combines the anisotropy of 2D double perovskites with the well-defined interface provided by heterogeneous integration. Driven by the built-in electric field in junction, photodetectors of HCs exhibit unique polarization dependence of zero-bias photocurrent with a large anisotropy ratio up to 9, which is 6 times amplified as compared to the pristine 2D (BLA)2 CsAgBiBr7 . More importantly, the present devices can remain polarization-sensitive with incident light intensity down to the nW cm-2 level. Our study on lead-free hybrid perovskite HCs marks a step toward establishing robust material foundations for fundamental scientific investigations and the development of optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...