Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 89(9): 2384-2395, 2024 May.
Article in English | MEDLINE | ID: mdl-38747955

ABSTRACT

Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain Bacillus cereus ZWB3 was co-cultured with the Cr(VI)-reducing strain Bacillus licheniformis MZ-1 to enhance phenol biodegradation under Cr(Ⅵ) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(Ⅵ), and Cr(Ⅵ)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(Ⅵ) tolerance. The determination coefficients R2, RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(Ⅵ) and phenol.


Subject(s)
Biodegradation, Environmental , Chromium , Machine Learning , Phenol , Phenol/metabolism , Chromium/metabolism , Bacillus cereus/metabolism , Water Pollutants, Chemical/metabolism , Bacillus licheniformis/metabolism
2.
Water Sci Technol ; 88(5): 1194-1206, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37771222

ABSTRACT

Phenol is a serious pollutant to the environment, therefore, it is urgent to find a rapid and effective method for its removal. In this study, Bacillus cereus ZWB3 immobilized on a polyurethane (PUF) carrier was studied. The PUF-ZWB3 required only 20 h for the degradation of 1,500 mg L-1 of phenol, shortened by 8 h than the free bacteria. In addition, the PUF-ZWB3 could increase the degradation concentration of phenol from 1,500 to 2,000 mg L-1, and the complete degradation of 2,000 mg L-1 phenol only used 44 h. In addition, the PUF-ZWB3 showed much higher removal of phenol than the free bacteria at different pH values, salt concentrations, and heavy metal ions. Particularly, the PUF-ZWB3 could still completely remove phenol in a strongly alkaline environment, such as pH 10 and 11. In addition, the removal efficiency of phenol by PUF-ZWB3 was still 100% after 10 cycles. This study showed that the PUF immobilization system had great potential in the field of remediation of organic pollution.


Subject(s)
Bacillus , Phenol , Phenol/metabolism , Bacillus/metabolism , Polyurethanes , Biodegradation, Environmental , Phenols , Bacillus cereus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...