Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Compr Psychiatry ; 133: 152487, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38714144

ABSTRACT

BACKGROUND: The incidence of non-suicidal self-injury (NSSI) has been on the rise in recent years. Studies have shown that people with NSSI have difficulties in emotion regulation and cognitive control. In addition, some studies have investigated the cognitive emotion regulation of people with NSSI which found that they have difficulties in cognitive emotion regulation, but there was a lack of research on cognitive emotion regulation strategies and related neural mechanisms. METHODS: This study included 117 people with NSSI (age = 19.47 ± 5.13, male = 17) and 84 non-NSSI participants (age = 19.86 ± 4.14, male = 16). People with NSSI met the DSM-5 diagnostic criteria, and non-NSSI participants had no mental or physical disorders. The study collected all participants' data of Cognitive Emotion Regulation Questionnaire (CERQ) and functional magnetic resonance imaging (fMRI) to explore the differences in psychological performance and brain between two groups. Afterwards, Machine learning was used to select the found differential brain regions to obtain the highest correlation regions with NSSI. Then, Allen's Human Brain Atlas database was used to compare with the information on the abnormal brain regions of people with NSSI to find the genetic information related to NSSI. In addition, gene enrichment analysis was carried out to find the related pathways and specific cells that may have differences. RESULTS: The differences between NSSI participants and non-NSSI participants were as follows: positive refocusing (t = -4.74, p < 0.01); refocusing on plans (t = -4.11, p < 0.01); positive reappraisal (t = -9.22, p < 0.01); self-blame (t = 6.30, p < 0.01); rumination (t = 3.64, p < 0.01); catastrophizing (t = 9.10, p < 0.01), and blaming others (t = 2.52, p < 0.01), the precentral gyrus (t = 6.04, pFDR < 0.05) and the rolandic operculum (t = -4.57, pFDR < 0.05). Rolandic operculum activity was negatively correlated with blaming others (r = -0.20, p < 0.05). Epigenetic results showed that excitatory neurons (p < 0.01) and inhibitory neurons (p < 0.01) were significant differences in two pathways, "trans-synaptic signaling" (p < -log108) and "modulation of chemical synaptic transmission" (p < -log108) in both cells. CONCLUSIONS: People with NSSI are more inclined to adopt non-adaptive cognitive emotion regulation strategies. Rolandic operculum is also abnormally active. Abnormal changes in the rolandic operculum of them are associated with non-adaptive cognitive emotion regulation strategies. Changes in the excitatory and inhibitory neurons provide hints to explore the abnormalities of the neurological mechanisms at the cellular level of them. Trial registration number NCT04094623.

2.
J Cell Physiol ; 233(12): 9777-9785, 2018 12.
Article in English | MEDLINE | ID: mdl-30078218

ABSTRACT

Adipose stem cells (ASCs) are considered a great alternative source of mesenchymal stem cells (MSCs) and have shown great promise on tissue engineering and regenerative medicine applications, including bone repair. However, the underlying mechanisms regulating the osteogenic differentiation of ASCs remain poorly known. Gene expression profiles of GSE63754 and GSE37329 were downloaded from gene expression omnibus database. R software and Bioconductor packages were used to compare and identify the differentially expressed genes (DEGs) before and after ASC osteogenic differentiation. The common significant DEGs between GSE63754 and GSE37329 were then subjected to gene ontology (GO) enrichment analysis, ingenuity pathway analysis (IPA), and protein-protein interactions (PPIs) networks analysis. One of the central node genes FOXO1 was selected for further investigation. A total of 142 up- and 69 downregulated genes were aberrantly expressed in both GSE63754 and GSE37329. GO analysis revealed that these DEGs were associated with extracellular matrix organization, proteinaceous extracellular matrix, and Wnt-protein binding. IPA analysis showed that canonical pathways, such as FXR/RXR activation, adipogenesis pathway, and LXR/RXR activation, were involved in regulating osteogenic differentiation of ASCs. A total of three subnetworks and 39 nodes were identified with PPI network and MCODE plugin. Moreover, suppression of one central node gene FOXO1 inhibited the osteogenic differentiation of ASCs. Our study provides a registry of genes and pathways that play important roles in regulating osteogenic differentiation of ASCs, which might have potential therapeutic applications in bone regeneration and bone tissue engineering.


Subject(s)
Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Protein Interaction Maps/genetics , Adipocytes/cytology , Adipocytes/metabolism , Gene Expression Regulation, Developmental , Humans , Mesenchymal Stem Cells/cytology , Signal Transduction/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...