Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 743
Filter
1.
Front Bioeng Biotechnol ; 12: 1389143, 2024.
Article in English | MEDLINE | ID: mdl-38832129

ABSTRACT

Cells constitute the fundamental units of living organisms. Investigating individual differences at the single-cell level facilitates an understanding of cell differentiation, development, gene expression, and cellular characteristics, unveiling the underlying laws governing life activities in depth. In recent years, the integration of single-cell manipulation and recognition technologies into detection and sorting systems has emerged as a powerful tool for advancing single-cell research. Raman cell sorting technology has garnered attention owing to its non-labeling, non-destructive detection features and the capability to analyze samples containing water. In addition, this technology can provide live cells for subsequent genomics analysis and gene sequencing. This paper emphasizes the importance of single-cell research, describes the single-cell research methods that currently exist, including single-cell manipulation and single-cell identification techniques, and highlights the advantages of Raman spectroscopy in the field of single-cell analysis by comparing it with the fluorescence-activated cell sorting (FACS) technique. It describes various existing Raman cell sorting techniques and introduces their respective advantages and disadvantages. The above techniques were compared and analyzed, considering a variety of factors. The current bottlenecks include weak single-cell spontaneous Raman signals and the requirement for a prolonged total cell exposure time, significantly constraining Raman cell sorting technology's detection speed, efficiency, and throughput. This paper provides an overview of current methods for enhancing weak spontaneous Raman signals and their associated advantages and disadvantages. Finally, the paper outlines the detailed information related to the Raman cell sorting technology mentioned in this paper and discusses the development trends and direction of Raman cell sorting.

2.
Neoplasia ; 54: 101013, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850835

ABSTRACT

In invasive lung adenocarcinoma (LUAD), patients with micropapillary (MIP) or solid (SOL) components had a significantly poorer prognosis than those with only lepidic (LEP), acinar (ACI) or papillary (PAP) components. It is interesting to explore the genetic features of different histologic subtypes, especially the highly aggressive components. Based on a cohort of 5,933 patients, this study observed that in different tumor size groups, LUAD with MIP/SOL components showed a different prevalence, and patients with ALK alteration or TP53 mutations had a higher probability of developing MIP/SOL components. To control individual differences, this research used spatial whole-exome sequencing (WES) via laser-capture microdissection of five patients harboring these five coexistent components and identified genetic features among different histologic components of the same tumor. In tracing the evolution of components, we found that titin (TTN) mutation might serve as a crucial intratumor potential driver for MIP/SOL components, which was validated by a cohort of 146 LUAD patients undergoing bulk WES. Functional analysis revealed that TTN mutations enriched the complement and coagulation cascades, which correlated with the pathway of cell adhesion, migration, and proliferation. Collectively, the histologic subtypes of invasive LUAD were genetically different, and certain trunk genotypes might synergize with branching TTN mutation to develop highly aggressive components.

3.
Cancer Med ; 13(11): e7364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847084

ABSTRACT

PURPOSE: Lung cancer (LC) and breast cancer (BC) are the most common causes of brain metastases (BMs). Time from primary diagnosis to BM (TPDBM) refers to the time interval between initial LC or BC diagnosis and development of BM. This research aims to identify clinical, molecular, and therapeutic risk factors associated with shorter TPDBM. METHODS: We retrospectively reviewed all diagnosed LC and BC patients with BM at Harbin Medical University Cancer Hospital from 2016 to 2020. A total of 570 patients with LC brain metastasis (LCBM) and 173 patients with breast cancer brain metastasis (BCBM) patients who met the inclusion criteria were enrolled for further analysis. BM free survival time curves were generated using Kaplan-Meier analyses. Univariate and multivariate Cox regression analyses were applied to identify risk factors associated with earlier development of BM in LC and BC, respectively. RESULTS: The median TPDBM was 5.3 months in LC and 44.4 months in BC. In multivariate analysis, clinical stage IV and M1 stage were independent risk factors for early development of LCBM. LC patients who received chemotherapy, targeted therapy, pulmonary radiotherapy, and pulmonary surgery had longer TPDBM. For BC patients, age ≥ 50 years, Ki67 ≥ 0.3, HER2 positive or triple-negative breast cancer subtype, advanced N stage, and no mastectomy were correlated with shorter TPDBM. CONCLUSIONS: This single-institutional study helps identify patients who have a high risk of developing BM early. For these patients, early detection and intervention could have clinical benefits.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Lung Neoplasms , Humans , Female , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Retrospective Studies , Risk Factors , Aged , Male , Time Factors , Adult , Neoplasm Staging
4.
BMC Med Genomics ; 17(1): 123, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711022

ABSTRACT

BACKGROUND: Depression is a common chronic debilitating disease with a heavy social burden. single nucleotide polymorphisms (SNPs) can affect the function of microRNAs (miRNAs), which is in turn associated with neurological diseases. However, the association between SNPs located in the promoter region of miR-17-92 and the risk of depression remains unclear. Therefore, we investigated the association between rs982873, rs9588884 and rs1813389 polymorphisms in the promoter region of miR-17-92 and the incidence of depression in a Chinese population. METHODS: we used GWAS (Genome-wide association study) and NCBI (National Center for Biotechnology Information) to screen three SNPs in the miR-17-92 cluster binding sites. A case-control study (including 555 cases and 541 controls) was conducted to investigate the relationship between the SNPs and risk of depression in different regions of China. The gene sequencing ii was used to genotype the collected blood samples. RESULTS: the following genotypes were significantly associated with a reduced risk of depression: rs982873 TC (TC vs. TT: OR = 0.72, 95% CI, 0.54-0.96, P = 0.024; TC/CC vs. TT: OR = 0.74, 95% Cl, 0.56-0.96, P = 0.025); CG genotype of rs9588884 (CG vs. CC: OR = 0.74, 95% CI, 0.55-0.98, P = 0.033; CG/GG vs. CC: OR = 0.75, 95% Cl, 0.57-0.98, P = 0.036); and AG genotype of rs1813389 (AG vs. AA: OR = 0.75, 95% CI, 0.57-1.00, P = 0.049; AG/GG vs. AA: OR = 0.76, 95% Cl, 0.59-1.00, P = 0.047). Stratified analysis showed that there was no significant correlation between the three SNPS and variables such as family history of suicidal tendency (P > 0.05). CONCLUSIONS: our findings suggest that rs982873, rs9588884, and rs1813389 polymorphisms may be associated with protective factors for depression.


Subject(s)
Depression , Genetic Predisposition to Disease , MicroRNAs , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RNA, Long Noncoding , Humans , Male , Depression/genetics , Female , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Middle Aged , Case-Control Studies , China , Asian People/genetics , Adult , Genome-Wide Association Study , East Asian People
5.
Sci Rep ; 14(1): 10490, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714744

ABSTRACT

The structure of rocks plays a crucial role in their failure process. However, it is ignored that the interactions between rock internal structure and the effect of its own evolution on the rock fracture process. To investigate the effect between the evolution law of rock regionalized structures and their interaction relationships during failure. We conducted an experiment using visual acoustic imaging monitoring to study rock failure, introducing a new concept of characteristics of rock structure-regionalized structures. The findings reveal three main types of regionalized structures in rocks: skeleton regions, variable regions, and damage regions. These structures combine to form four categories of complex rock structures: block-type support skeletons, point column-type support skeletons, suspension-type weak support skeletons, and no skeletons. During the failure process, we found that these regionalized structures worked together synergistically to control rock failure. Although the evolutionary relationships among the structures show some similarities, the final fracture states vary significantly. Stress and strain distribution patterns clearly demonstrate that variations in the force capacities and roles of the regionalized structures influence the synergistic evolutionary relationships, ultimately impacting the mode of rock failure. This work provides new insights for further research on rock failure mechanisms and can significantly contribute to preventing rock engineering disasters related to regionalized structures.

6.
J Tradit Chin Med ; 44(3): 515-523, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767635

ABSTRACT

OBJECTIVE: To explore the material basis of the difference of efficacy of Dahuang (Radix Et Rhizoma Rhei Palmati)-Taoren (Semen Persicae) (DT) drugs with different proportions. METHODS: Samples of different ratios of Dahuang (Radix et Rhizoma Rhei Palnati, DH) to Taoren (Semen Persicae, TR) (Group A 1:1, B 2:3, C 3:2) were analyzed based on gas chromatography time-of-flight mass spectrometry untargeted metabolomics technique. RESULTS: A total of 240 primary metabolites were detected. Forty-one differential metabolites involved nine differential metabolic pathways, of which four were closely related to the efficacy of DT in the treatment of heat and blood stasis syndrome. These pathways included the biosynthesis of amino acid (phenylalanine tyrosine and tryptophan), flavonoids, unsaturated fatty acids, and the glycolysis/glycogenesis pathway. CONCLUSION: There are significant differences in the efficacy of different ratios of DT drugs, and their optimal ratio for the treatment of heat and blood stasis syndrome should be 1:1.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Humans , Male , Gas Chromatography-Mass Spectrometry , Animals
7.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
8.
BMC Cancer ; 24(1): 646, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802765

ABSTRACT

BACKGROUND: Radiotherapy interruption (RTI) prolongs the overall total treatment time and leads to local control loss in many cancers, but it is unclear in esophageal cancer. We aimed to evaluate the influence of RTI on the overall survival (OS), progression-free survival (PFS), and local-regional recurrence-free survival (LRFS) of patients with esophageal cancer undergoing chemoradiotherapy. METHODS: A total of 299 patients with esophageal squamous cell carcinoma from 2017 to 2019 were retrospectively analyzed to investigate the effect of RTI on OS, PFS, and LRFS. The delayed time of radiotherapy interruption was calculated as the actual radiation treatment time minus the scheduled time. The univariate and multivariate analyses were performed by the COX proportional hazards regression models, and the survival analysis was performed through the Kaplan‒Meier method, and compared with the log-rank test. RESULTS: The 3-year OS, PFS, and LRFS rates were 53.0%, 42.0%, and 48.0%, respectively. The univariate and multivariate analyses showed that the delayed time > 3 days was an independent adverse prognostic factor for OS (HR = 1.68, 95% CI 1.10-2.55, p = 0.016), and LRFS (HR = 1.74, 95% CI 1.18-2.57, p = 0.006). The patient with a delayed time of > 3 days had poorer survival rates of OS, and LRFS than patients with a delayed time of ≤ 3 days (OS, p = 0.047; LRFS, p = 0.013), and the survival outcomes of patients with shorter delayed time (1-3 days) were slightly different from the patients without interruptions. The impact of delay time on PFS is not statistically significant, but the survival outcomes of the two groups were slightly different. CONCLUSION: There was a significant correlation between delayed time and local control of esophageal cancer. The delayed time for more than 3 days might decrease the survival outcome, and increase the local recurrence risk.


Subject(s)
Chemoradiotherapy , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Radiotherapy, Intensity-Modulated , Humans , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/mortality , Retrospective Studies , Male , Female , Middle Aged , Radiotherapy, Intensity-Modulated/methods , Aged , Chemoradiotherapy/methods , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/pathology , Adult , Prognosis , Neoplasm Recurrence, Local/prevention & control , Survival Rate , Kaplan-Meier Estimate , Aged, 80 and over , Proportional Hazards Models
9.
Water Res ; 257: 121701, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733962

ABSTRACT

Nitrate or nitrite-dependent anaerobic methane oxidation (n-DAMO) is a microbial process that links carbon and nitrogen cycles as a methane sink in many natural environments. This study demonstrates, for the first time, that the nitrite-dependent anaerobic methane oxidation (nitrite-DAMO) process can be stimulated in sewer systems under continuous nitrate dosing for sulfide control. In a laboratory sewer system, continuous nitrate dosing not only achieved complete sulfide removal, but also significantly decreased dissolved methane concentration by ∼50 %. Independent batch tests confirmed the coupling of methane oxidation with nitrate and nitrite reduction, revealing similar methane oxidation rates of 3.68 ± 0.5 mg CH4 L-1 h-1 (with nitrate as electron acceptor) and 3.57 ± 0.4 mg CH4 L-1 h-1 (with nitrite as electron acceptor). Comprehensive microbial analysis unveiled the presence of a subgroup of the NC10 phylum, namely Candidatus Methylomirabilis (n-DAMO bacteria that couples nitrite reduction with methane oxidation), growing in sewer biofilms and surface sediments with relative abundances of 1.9 % and 1.6 %, respectively. In contrast, n-DAMO archaea that couple methane oxidation solely to nitrate reduction were not detected. Together these results indicated the successful enrichment of n-DAMO bacteria in sewerage systems, contributing to approx. 64 % of nitrite reduction and around 50 % of dissolved methane removal through the nitrite-DAMO process, as estimated by mass balance analysis. The occurrence of the nitrite-DAMO process in sewer systems opens a new path to sewer methane emissions.


Subject(s)
Methane , Nitrates , Nitrites , Oxidation-Reduction , Sewage , Methane/metabolism , Anaerobiosis
10.
Environ Sci Technol ; 58(22): 9582-9590, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780619

ABSTRACT

Wastewater treatment contributes substantially to methane (CH4) emissions, yet monitoring and tracing face challenges because the treatment processes are often treated as a "black box". Particularly, despite growing interest, the amount of CH4 carryover and influx from the sewer and its impacts on overall emissions remain unclear. This study quantified CH4 emissions from six wastewater treatment plants (WWTPs) across China, utilizing existing multizonal odor control systems, with a focus on Beijing and Guiyang WWTPs. In the Beijing WWTP, almost 90% of CH4 emissions from the wastewater treatment process were conveyed through sewer pipes, affecting emissions even in the aerobic zone of biological treatment. In the Guiyang WWTP, where most CH4 from the sewer was released at the inlet well, a 24 h online monitoring revealed CH4 fluctuations linked to neighborhood water consumption and a strong correlation to influent COD inputs. CH4 emission factors monitored in six WWTPs range from 1.5 to 13.4 gCH4/kgCODrem, higher than those observed in previous studies using A2O technology. This underscores the importance of considering CH4 influx from sewer systems to avoid underestimation. The odor control system in WWTPs demonstrates its potential as a cost-effective approach for tracing, monitoring, and mitigating CH4.


Subject(s)
Methane , Sewage , Wastewater , Methane/analysis , Wastewater/chemistry , Waste Disposal, Fluid , China , Environmental Monitoring
11.
Environ Res ; 252(Pt 4): 119127, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38750998

ABSTRACT

With the ability to generate in situ real-time electric signals, electrochemically active biofilm (EAB) sensors have attracted wide attention as a promising water biotoxicity early-warning device. Organic matters serving as the electron donors potentially affect the electric signal's output and the sensitivity of the EAB sensor. To explore the influence of organic matters on EAB sensor's performance, this study tested six different organic matters during the sensor's inoculation. Besides the acetate, a conventional and widely used organic matter, propionate and lactate were also found capable of starting up the sensor. Moreover, the propionate-fed (PF) sensor delivered the highest sensitivity, which are respectively 1.4 times and 2.8 times of acetate-fed (AF) sensor and lactate-fed (LF) sensor. Further analysis revealed that EAB of PF sensor had more vulnerable intracellular metabolism than the others, which manifested as the most severe energy metabolic suppression and reactive oxygen species attack. Regarding the microbial function, a two-component system that was deemed as an environment awareness system was found in the EAB of PF, which also contributed to its high sensitivity. Finally, PF sensor was tested in real water environment to deliver early-warning signals.


Subject(s)
Acetates , Biofilms , Electrochemical Techniques , Propionates , Biofilms/drug effects , Biofilms/growth & development , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
12.
Front Microbiol ; 15: 1369506, 2024.
Article in English | MEDLINE | ID: mdl-38659989

ABSTRACT

Single-cell isolation stands as a critical step in single-cell studies, and single-cell ejection technology based on laser induced forward transfer technology (LIFT) is considered one of the most promising methods in this regard for its ability of visible isolating single cell from complex samples. In this study, we improve the LIFT technology and introduce optical vortex laser-induced forward transfer (OV-LIFT) and flat-top laser-induced forward transfer (FT-LIFT) by utilizing spatial light modulator (SLM), aiming to enhance the precision of single-cell sorting and the cell's viability after ejection. Experimental results demonstrate that applying vortex and flat-top beams during the sorting and collection process enables precise retrieval of single cells within diameter ranges of 50 µm and 100 µm, respectively. The recovery rates of Saccharomyces cerevisiae and Escherichia coli DH5α single cell ejected by vortex beam are 89 and 78%, by flat-top beam are 85 and 57%. When employing Gaussian beam sorting, the receiving range extends to 400 µm, with cultivation success rates of S. cerevisiae and E. coli DH5α single cell are 48 and 19%, respectively. This marks the first application of different mode beams in the ejection and cultivation of single cells, providing a novel and effective approach for the precise isolation and improving the viability of single cells.

13.
Signal Transduct Target Ther ; 9(1): 93, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637495

ABSTRACT

Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) protein significantly improve survival in patients with advanced non-small-cell lung cancer (NSCLC), but its impact on early-stage ground-glass opacity (GGO) lesions remains unclear. This is a single-arm, phase II trial (NCT04026841) using Simon's optimal two-stage design, of which 4 doses of sintilimab (200 mg per 3 weeks) were administrated in 36 enrolled multiple primary lung cancer (MPLC) patients with persistent high-risk (Lung-RADS category 4 or had progressed within 6 months) GGOs. The primary endpoint was objective response rate (ORR). T/B/NK-cell subpopulations, TCR-seq, cytokines, exosomal RNA, and multiplexed immunohistochemistry (mIHC) were monitored and compared between responders and non-responders. Finally, two intent-to-treat (ITT) lesions (pure-GGO or GGO-predominant) showed responses (ORR: 5.6%, 2/36), and no patients had progressive disease (PD). No grade 3-5 TRAEs occurred. The total response rate considering two ITT lesions and three non-intent-to-treat (NITT) lesions (pure-solid or solid-predominant) was 13.9% (5/36). The proportion of CD8+ T cells, the ratio of CD8+/CD4+, and the TCR clonality value were significantly higher in the peripheral blood of responders before treatment and decreased over time. Correspondingly, the mIHC analysis showed more CD8+ T cells infiltrated in responders. Besides, responders' cytokine concentrations of EGF and CTLA-4 increased during treatment. The exosomal expression of fatty acid metabolism and oxidative phosphorylation gene signatures were down-regulated among responders. Collectively, PD-1 inhibitor showed certain activity on high-risk pulmonary GGO lesions without safety concerns. Such effects were associated with specific T-cell re-distribution, EGF/CTLA-4 cytokine compensation, and regulation of metabolism pathways.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Programmed Cell Death 1 Receptor/genetics , CTLA-4 Antigen/therapeutic use , CD8-Positive T-Lymphocytes , Epidermal Growth Factor , Tomography, X-Ray Computed , Lung/pathology , Receptors, Antigen, T-Cell , Cytokines
15.
Can Respir J ; 2024: 5554886, 2024.
Article in English | MEDLINE | ID: mdl-38584671

ABSTRACT

Objective: To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods: First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor ß, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results: APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.


Subject(s)
Ferroptosis , Panax notoginseng , Pulmonary Fibrosis , Animals , Mice , Pulmonary Fibrosis/drug therapy , Cyclooxygenase 2 , Collagen , ErbB Receptors
16.
Anesthesiology ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625708

ABSTRACT

BACKGROUND: Stimulation of the paraventricular thalamus has been found to enhance anesthesia recovery; however, the underlying molecular mechanism by which general anesthetics modulate paraventricular thalamus is unclear. Here, we aimed to test the hypothesis that the sodium leak channel (NALCN) maintains neuronal activity in paraventricular thalamus to resist anesthetic effects of sevoflurane in mice. METHOD: Chemogenetic and optogenetic manipulations, in vivo multiple-channel recordings, and electroencephalogram recordings were used to investigate the role of paraventricular thalamus neuronal activity in sevoflurane anesthesia. Virus-mediated knockdown and/or overexpression was applied to determine how sodium leak channel influenced excitability of paraventricular thalamus glutamatergic neurons under sevoflurane. Viral tracers and local field potentials were used to explore the downstream pathway. RESULTS: Single neuronal spikes in the paraventricular thalamus were suppressed by sevoflurane anesthesia and recovered during emergence. Optogenetic activation of paraventricular thalamus glutamatergic neurons shortened the emergence period from sevoflurane anesthesia, while chemogenetic inhibition had the opposite effect. Knockdown of sodium leak channel in paraventricular thalamus delayed the emergence from sevoflurane anesthesia (recovery time: from 24 ± 14 to 64 ± 19 s, P < 0.001; concentration for recovery of the righting reflex: from 1.13% ± 0.10% to 0.97% ± 0.13%, P < 0.01). As expected, the overexpression of sodium leak channel in the paraventricular thalamus produced the opposite effects. At the circuit level, knockdown of sodium leak channel in the paraventricular thalamus decreased the neuronal activity of the nucleus accumbens, as indicated by the local field potential and decreased single neuronal spikes in the nucleus accumbens. Additionally, the effects of sodium leak channel knockdown in the paraventricular thalamus on sevoflurane actions were reversed by optical stimulation of the nucleus accumbens. CONCLUSIONS: Activity of sodium leak channel maintains the excitability of paraventricular thalamus glutamatergic neurons to resist the anesthetic effects of sevoflurane in mice.

17.
J Colloid Interface Sci ; 668: 352-365, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38678890

ABSTRACT

The traditional techniques for the synthesis of nickel phyllosilicates usually time-consuming and energy-intensive, which often lead to the formation of layers with excessive thickness due to uncontrolled crystal growth. In order to overcome these challenges, this work introduces a microwave-assisted synthesis strategy to facilitate the synthesis of Ni-phyllosilicate-based catalysts within an exceptionally short duration of only five minutes, attaining a peak temperature of merely 102 °C. To enhance the specific surface area and to increase the exposure of active sites, an investigation was conducted involving three surfactants. The employment of hexadecyl trimethyl ammonium bromide (CTAB) has yielded remarkable results, with an ultrahigh specific surface area reaching 535 m2 g-1 and an ultrathin lamellar thickness of 1.43 nm. The catalyst exhibited an impressive CO2 conversion of 81.7 % at 400 °C, 60 L g-1 h-1, 0.1 MPa. It also demonstrated a substantial turnover frequency for CO2 (TOFCO2) of 5.4 ± 0.1 × 10-2 s-1, alongside a relatively low activation energy (Ea) of 80.74 kJ·mol-1. Moreover, the catalyst maintained its high stability over a period of 100 h and displayed high resistance to sintering. To further elucidate growth temperature gradient of the catalyst and concentration gradient of the materials involved, COMSOL Multiphysics (COMSOL) simulations were effectively utilized. In conclusion, this work breaks the limitation associated with traditional, laborious synthesis methods for Ni-phyllosilicates, which can produce materials with high surface area and thin-layer characteristics.

18.
Article in English | MEDLINE | ID: mdl-38686340

ABSTRACT

Purpose: This study determined the digital mammography and ultrasonography imaging features of pure invasive micropapillary carcinoma of the breast (PIMPC) and the correlation with pathologic features. Patients Methods: Nineteen patients diagnosed with PIMPC at Yantaishan Hospital from October 2015 to February 2022 were included in the study group. Forty patients with breast masses diagnosed as nonspecific invasive ductal carcinoma of the breast (NIDC) from July to December 2021 were included in the control group. Digital mammography and ultrasonography features were compared between the two groups. Results: Patients with PIMPC had a younger age profile compared to patients with NIDC (P=0.017). Moreover, PIMPC masses were smaller than NIDC masses (P=0.040). Imaging features analysis revealed significant differences in age groups (<45 years: χ²=5.971, P=0.044) and the presence of spiculations or the crab claw sign (χ²=8.583, P=0.004) between patients with PIMPC and NIDC. However, there were no statistically significant differences in the presence of calcifications, blood flow grading, pathologic molecular subtypes between the study and control groups. The Ki-67 proliferative index (χ²=1.052, P=0.389), vascular invasion (χ²=2.263, P=0.197), and lymph node metastasis (χ²=1.968, P=0.386) showed no significant differences between PIMPC and NIDC patients. Conclusion: PIMPC imaging features show specificity, such as tiny breast masses, spiculated edges, or crab claw-like patterns, and malignant signs appeared when the lesion was <2 cm in diameter. PIMPC mainly occurs in middle-aged women 45-59 y of age. Patients with PIMPC and NIDC of the breast are frequently associated with lymph node metastases and greater than one-half of the cases (74%) were shown to have a Ki-67 index >30%, suggesting a significant risk of recurrence and metastasis. Early therapeutic care for these patients is crucial. These results warrant further validation with additional samples from several centers due to the limited single-center sample size in the current study.

19.
Brain Behav ; 14(3): e3448, 2024 03.
Article in English | MEDLINE | ID: mdl-38444330

ABSTRACT

INTRODUCTION: Treatment strategies for depression based on interventions for glucose and lipid metabolism disorders are receiving increasing attention. Investigating the mechanism of their antidepressant effect and exploring new diagnostic and therapeutic biomarkers have attracted increasing attention. Dulaglutide, a long-acting GLP-1 receptor agonist, has been reported to alleviate cognitive deficits and neuronal damage. However, the antidepressant effect of dulaglutide and, especially, the underlying mechanism are still poorly understood. In this study, we aimed to explore the underlying biomarkers of depression and potential modulatory targets of dulaglutide in chronic mild stress (CMS) mice. METHODS: Sixty mice were randomly divided into a control group (CON group), a CMS+Vehicle group (CMS+Veh group), a CMS+0.3 mg/kg dulaglutide group (Low Dula group), and a CMS+0.6 mg/kg dulaglutide group (High Dula group). Numerous behavioral tests, mainly the open field test, forced swimming test, and tail suspension test, were applied to evaluate the potential effect of dulaglutide treatment on anxiety- and depression-like behaviors in mice exposed to chronic stress. Furthermore, a liquid chromatography-tandem mass spectrometry-based metabolomics approach was utilized to investigate the associated mechanisms of dulaglutide treatment. RESULTS: Three weeks of dulaglutide treatment significantly reversed depressive-like but not anxiety-like behaviors in mice exposed to chronic stress for 4 weeks. The results from the metabolomics analysis showed that a total of 20 differentially expressed metabolites were identified between the CON and CMS+Veh groups, and 46 metabolites were selected between the CMS+Veh and High Dula groups in the hippocampus of the mice. Comprehensive analysis indicated that lipid metabolism, amino acid metabolism, energy metabolism, and tryptophan metabolism were disrupted in model mice that experienced depression and underwent dulaglutide therapy. CONCLUSION: The antidepressant effects of dulaglutide in a CMS depression model were confirmed. We identified 64 different metabolites and four major pathways associated with metabolic pathophysiological processes. These primary data provide a new perspective for understanding the antidepressant-like effects of dulaglutide and may facilitate the use of dulaglutide as a potential therapeutic strategy for depression.


Subject(s)
Antidepressive Agents , Depression , Glucagon-Like Peptides/analogs & derivatives , Immunoglobulin Fc Fragments , Recombinant Fusion Proteins , Animals , Mice , Depression/drug therapy , Homeostasis , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Biomarkers
20.
Environ Geochem Health ; 46(4): 121, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483644

ABSTRACT

Selective adsorption of heavy metal ions from industrial effluent is important for healthy ecosystem development. However, the selective adsorption of heavy metal pollutants by biochar using lignin as raw material is still a challenge. In this paper, the lignin carbon material (N-BLC) was synthesized by a one-step hydrothermal carbonization method using paper black liquor (BL) as raw material and triethylene diamine (TEDA) as nitrogen source. N-BLC (2:1) showed excellent selectivity for Cr(VI) in the binary system, and the adsorption amounts of Cr(VI) in the binary system were all greater than 150 mg/g, but the adsorption amounts of Ca(II), Mg(II), and Zn(II) were only 19.3, 25.5, and 6.3 mg/g, respectively. The separation factor (SF) for Cr(VI) adsorption was as high as 120.0. Meanwhile, FTIR, elemental analysis and XPS proved that the surface of N-BLC (2:1) contained many N- and O- containing groups which were favorable for the removal of Cr(VI). The adsorption of N-BLC (2:1) followed the Langmuir model and its maximum theoretical adsorption amount was 618.4 mg/g. After 5th recycling, the adsorption amount of Cr(VI) by N-BLC (2:1) decreased about 15%, showing a good regeneration ability. Therefore, N-BLC (2:1) is a highly efficient, selective and reusable Cr(VI) adsorbent with wide application prospects.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Carbon , Chromium/analysis , Hydrogen-Ion Concentration , Kinetics , Lignin , Nitrogen , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...