Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(17): e2307344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38133516

ABSTRACT

The intrinsic poor rheological properties of MXene inks result in the MXene nanosheets in dried MXene microfibers prone to self-stacking, which is not conducive to ion transport and diffusion, thus affecting the electrochemical performance of fiber-based supercapacitors. Herein, robust cellulose nanofibrils (CNF)/MXene hybrid fibers with high electrical conductivity (916.0 S cm-1) and narrowly distributed mesopores are developed by wet spinning. The interfacial interaction between CNF and MXene can be enhanced by hydrogen bonding and electrostatic interaction due to their rich surface functional groups. The interfacial modulation of MXene by CNF can not only regulate the rheology of MXene spinning dispersion, but also enhance the mechanical strength. Furthermore, the interlayer distance and self-stacking effect of MXene nanosheets are also regulated. Thus, the ion transport path within the fiber material is optimized and ion transport is accelerated. In H2SO4 electrolyte, a volumetric specific capacitance of up to 1457.0 F cm-3 (1.5 A cm-3) and reversible charge/discharge stability are demonstrated. Intriguingly, the assembled supercapacitors exhibit a high-volume energy density of 30.1 mWh cm-3 at 40.0 mW cm-3. Moreover, the device shows excellent flexibility and cycling stability, maintaining 83% of its initial capacitance after 10 000 charge/discharge cycles. Practical energy supply applications (Power for LED and electronic watch) can be realized.

2.
Front Bioeng Biotechnol ; 10: 1024453, 2022.
Article in English | MEDLINE | ID: mdl-36267450

ABSTRACT

With the emerging of the problems of environmental pollution and energy crisis, the development of high-efficiency energy storage technology and green renewable energy is imminent. Supercapacitors have drawn great attention in wearable electronics because of their good performance and portability. Electrodes are the key to fabricate high-performance supercapacitors with good electrochemical properties and flexibility. As a biomass based derived material, nanocellulose has potential application prospects in supercapacitor electrode materials due to its biodegradability, high mechanical strength, strong chemical reactivity, and good mechanical flexibility. In this review, the research progress of nanocellulose/two dimensional nanomaterials composites is summarized for supercapacitors in recent years. First, nanocellulose/MXene composites for supercapacitors are reviewed. Then, nanocellulose/graphene composites for supercapacitors are comprehensively elaborated. Finally, we also introduce the current challenges and development potential of nanocellulose/two dimensional nanomaterials composites in supercapacitors.

3.
Polymers (Basel) ; 11(2)2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30960181

ABSTRACT

Recently, we have developed an eco-friendly method for the preparation of a renewable dicarboxylic acid 2,5-furandicarboxylic acid (FDCA) from biomass-based 5-hydroxymethylfrufural (HMF). In the present work, we optimized our reported method, which used phosphate buffer and Fe(OH)3 as the stabilizer to improve the stability of potassium ferrate, then got a purified FDCA (up to 99%) in high yield (91.7 wt %) under mild conditions (25 °C, 15 min, air atmosphere). Subsequently, the obtained FDCA, along with 1,6-hexanediol (HDO), which was also made from HMF, were used as monomers for the synthesis of poly(hexylene 2,5-furandicarboxylate) (PHF) via direct esterification, and triphenyl phosphite was used as the antioxidant to alleviate the discoloration problem during the esterification. The intrinsic viscosity, mechanical properties, molecular structure, thermal properties, and degradability of the PHFs were measured or characterized by Koehler viscometer, universal tensile tester, Nuclear Magnetic Resonance (NMR), Fourier-transform Infrared (FTIR), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), Derivative Thermogravimetry (DTG), Scanning Electron Microscope (SEM), and weight loss method. The experimental evidence clearly showed that the furan-aromatic polyesters prepared from biomass-based HMF are viable alternatives to the petrochemical benzene-aromatic polyesters, they can serve as low-melting heat bondable fiber, high gas-barrier packaging material, as well as specialty material for engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...